
Fast Algorithms for Gaussian Noise Invariant
Independent Component Analysis

James Voss
Ohio State University

Computer Science and Engineering,
2015 Neil Avenue, Dreese Labs 586.

Columbus, OH 43210
vossj@cse.ohio-state.edu

Luis Rademacher
Ohio State University

Computer Science and Engineering,
2015 Neil Avenue, Dreese Labs 495.

Columbus, OH 43210
lrademac@cse.ohio-state.edu

Mikhail Belkin
Ohio State University

Computer Science and Engineering,
2015 Neil Avenue, Dreese Labs 597.

Columbus, OH 43210
mbelkin@cse.ohio-state.edu

Abstract

The performance of standard algorithms for Independent Component Analysis
quickly deteriorates under the addition of Gaussian noise. This is partially due
to a common first step that typically consists of whitening, i.e., applying Prin-
cipal Component Analysis (PCA) and rescaling the components to have identity
covariance, which is not invariant under Gaussian noise.
In our paper we develop the first practical algorithm for Independent Component
Analysis that is provably invariant under Gaussian noise. The two main contribu-
tions of this work are as follows:
1. We develop and implement an efficient, Gaussian noise invariant decorrelation
(quasi-orthogonalization) algorithm using Hessians of the cumulant functions.
2. We propose a very simple and efficient fixed-point GI-ICA (Gradient Iteration
ICA) algorithm, which is compatible with quasi-orthogonalization, as well as with
the usual PCA-based whitening in the noiseless case. The algorithm is based on
a special form of gradient iteration (different from gradient descent). We provide
an analysis of our algorithm demonstrating fast convergence following from the
basic properties of cumulants. We also present a number of experimental compar-
isons with the existing methods, showing superior results on noisy data and very
competitive performance in the noiseless case.

1 Introduction and Related Works
In the Blind Signal Separation setting, it is assumed that observed data is drawn from an unknown
distribution. The goal is to recover the latent signals under some appropriate structural assumption.
A prototypical setting is the so-called cocktail party problem: in a room, there are d people speaking
simultaneously and d microphones, with each microphone capturing a superposition of the voices.
The objective is to recover the speech of each individual speaker. The simplest modeling assumption
is to consider each speaker as producing a signal that is a random variable independent of the others,
and to take the superposition to be a linear transformation independent of time. This leads to the
following formalization: We observe samples from a random vector x distributed according to the
equation x = As + b + η where A is a linear mixing matrix, b ∈ Rd is a constant vector, s is a
latent random vector with independent coordinates, and η is an unknown random noise independent

1

mailto:vossj@cse.ohio-state.edu
mailto:lrademac@cse.ohio-state.edu
mailto:mbelkin@cse.ohio-state.edu

of s. For simplicity, we assume A ∈ Rd×d is square and of full rank. The latent components of s
are viewed as containing the information describing the makeup of the observed signal (voices of
individual speakers in the cocktail party setting). The goal of Independent Component Analysis is
to approximate the matrix A in order to recover the latent signal s. In practice, most methods ignore
the noise term, leaving the simpler problem of recovering the mixing matrix A when x = As is
observed.

Arguably the two most widely used ICA algorithms are FastICA [13] and JADE [6]. Both of these
algorithms are based on a two step process:
(1) The data is centered and whitened, that is, made to have identity covariance matrix. This is
typically done using principal component analysis (PCA) and rescaling the appropriate components.
In the noiseless case this procedure orthogonalizes and rescales the independent components and
thus recovers A up to an unknown orthogonal matrix R.
(2) Recover the orthogonal matrix R.

Most practical ICA algorithms differ only in the second step. In FastICA, various objective functions
are used to perform a projection pursuit style algorithm which recovers the columns of R one at a
time. JADE uses a fourth-cumulant based technique to simultaneously recover all columns of R.

Step 1 of ICA is affected by the addition of a Gaussian noise. Even if the noise is white (has a scalar
times identity covariance matrix) the PCA-based whitening procedure can no longer guarantee the
whitening of the underlying independent components. Hence, the second step of the process is no
longer justified. This failure may be even more significant if the noise is not white, which is likely to
be the case in many practical situations. Recent theoretical developments (see, [2] and [3]) consider
the case where the noise η is an arbitrary (not necessarily white) additive Gaussian variable drawn
independently from s.

In [2], it was observed that certain cumulant-based techniques for ICA can still be applied for the
second step if the underlying signals can be orthogonalized.1 Orthogonalization of the latent sig-
nals (quasi-orthogonalization) is a significantly less restrictive condition as it does not force the
underlying signal to have identity covariance (as in whitening in the noiseless case). In the noisy
setting, the usual PCA cannot achieve quasi-orthogonalization as it will whiten the mixed signal, but
not the underlying components. In [3], we show how quasi-orthogonalization can be achieved in a
noise-invariant way through a method based on the fourth-order cumulant tensor. However, a direct
implementation of that method requires estimating the full fourth-order cumulant tensor, which is
computationally challenging even in relatively low dimensions. In this paper we derive a practical
version of that algorithm based on directional Hessians of the fourth univariate cumulant, thus re-
ducing the complexity dependence on the data dimensionality from d4 to d3, and also allowing for
a fully vectorized implementation.

We also develop a fast and very simple gradient iteration (not to be confused with gradient descent)
algorithm, GI-ICA, which is compatible with the quasi-orthogonalization step and can be shown to
have convergence of order r− 1, when implemented using a univariate cumulant of order r. For the
cumulant of order four, commonly used in practical applications, we obtain cubic convergence. We
show how these convergence rates follow directly from the properties of the cumulants, which sheds
some light on the somewhat surprising cubic convergence seen in fourth-order based ICA methods
[13, 18, 22]. The update step has complexity O(Nd) where N is the number of samples, giving a
total algorithmic complexity of O(Nd3) for step 1 and O(Nd2t) for step 2, where t is the number
of iterations for convergence in the gradient iteration.

Interestingly, while the techniques are quite different, our gradient iteration algorithm turns out to
be closely related to Fast ICA in the noiseless setting, in the case when the data is whitened and the
cumulants of order three or four are used. Thus, GI-ICA can be viewed as a generalization (and a
conceptual simplification) of Fast ICA for more general quasi-orthogonalized data.

We present experimental results showing superior performance in the case of data contaminated
by Gaussian noise and very competitive performance for clean data. We also note that the GI-
ICA algorithms are fast in practice, allowing us to process (decorrelate and detect the independent

1This process of orthogonalizing the latent signals was called quasi-whitening in [2] and later in [3]. How-
ever, this conflicts with the definition of quasi-whitening given in [12] which requires the latent signals to be
whitened. To avoid the confusion we will use the term quasi-orthogonalization for the process of orthogonal-
izing the latent signals.

2

components) 100 000 points in dimension 5 in well under a second on a standard desktop computer.
Our Matlab implementation of GI-ICA is available for download at http://sourceforge.
net/projects/giica/.

Finally, we observe that our method is partially compatible with the robust cumulants introduced
in [20]. We briefly discuss how GI-ICA can be extended using these noise-robust techniques for
ICA to reduce the impact of sparse noise.

The paper is organized as follows. In section 2, we discuss the relevant properties of cumulants,
and discuss results from prior work which allows for the quasi-orthogonalization of signals with
non-zero fourth cumulant. In section 3, we discuss the connection between the fourth-order cumu-
lant tensor method for quasi-orthogonalization discussed in section 2 with Hessian-based techniques
seen in [2] and [11]. We use this connection to create a more computationally efficient and prac-
tically implementable version of the quasi-orthogonalization algorithm discussed in section 2. In
section 4, we discuss new, fast, projection-pursuit style algorithms for the second step of ICA which
are compatible with quasi-orthogonalization. In order to simplify the presentation, all algorithms
are stated in an abstract form as if we have exact knowledge of required distribution parameters.
Section 5 discusses the estimators of required distribution parameters to be used in practice. Section
6 discusses numerical experiments demonstrating the applicability of our techniques.

Related Work. The name Independent Component Analysis refers to a broad range of algorithms
addressing the blind signal separation problem as well as its variants and extensions. There is an
extensive literature on ICA in the signal processing and machine learning communities due to its
applicability to a variety of important practical situations. For a comprehensive introduction see
the books [8, 14]. In this paper we develop techniques for dealing with noisy data by introducing
new and more efficient techniques for quasi-orthogonalization and subsequent component recovery.
The quasi-orthogonalization step was introduced in [2], where the authors proposed an algorithm
for the case when the fourth cumulants of all independent components are of the same sign. A
general algorithm with complete theoretical analysis was provided in [3]. That algorithm required
estimating the full fourth-order cumulant tensor.

We note that Hessian based techniques for ICA were used in [21, 2, 11], with [11] and [2] using the
Hessian of the fourth-order cumulant. The papers [21] and [11] proposed interesting randomized
one step noise-robust ICA algorithms based on the cumulant generating function and the fourth
cumulant respectively in primarily theoretical settings. The gradient iteration algorithm proposed is
closely related to the work [18], which provides a gradient-based algorithm derived from the fourth
moment with cubic convergence to learn an unknown parallelepiped in a cryptographic setting. For
the special case of the fourth cumulant, the idea of gradient iteration has appeared in the context
of FastICA with a different justification, see e.g. [16, Equation 11 and Theorem 2]. We also note
the work [12], which develops methods for Gaussian noise-invariant ICA under the assumption that
the noise parameters are known. Finally, there are several papers that considered the problem of
performing PCA in a noisy framework. [5] gives a provably robust algorithm for PCA under a
sparse noise model. [4] performs PCA robust to white Gaussian noise, and [9] performs PCA robust
to white Gaussian noise and sparse noise.

2 Using Cumulants to Orthogonalize the Independent Components
Properties of Cumulants: Cumulants are similar to moments and can be expressed in terms of
certain polynomials of the moments. However, cumulants have additional properties which allow
independent random variables to be algebraically separated. We will be interested in the fourth order
multi-variate cumulants, and univariate cumulants of arbitrary order. Denote by Qx the fourth order
cumulant tensor for the random vector x. So, (Qx)ijkl is the cross-cumulant between the random
variables xi, xj , xk, and xl, which we alternatively denote as Cum(xi, xj , xk, xl). Cumulant tensors
are symmetric, i.e. (Qx)ijkl is invariant under permutations of indices. Multivariate cumulants have
the following properties (written in the case of fourth order cumulants):

1. (Multilinearity) Cum(αxi, xj , xk, xl) = αCum(xi, xj , xk, xl) for random vector x and scalar α.
If y is a random variable, then Cum(xi+y, xj , xk, xl) = Cum(xi, xj , xk, xl)+Cum(y, xj , xk, xl).
2. (Independence) If xi and xj are independent random variables, then Cum(xi, xj , xk, xl) = 0.
When x and y are independent, Qx+y = Qx +Qy.
3. (Vanishing Gaussian) Cumulants of order 3 and above are zero for Gaussian random variables.

3

http://sourceforge.net/projects/giica/
http://sourceforge.net/projects/giica/

The first order cumulant is the mean, and the second order multivariate cumulant is the covariance
matrix. We will denote by κr(x) the order-r univariate cumulant, which is equivalent to the cross-
cumulant of xwith itself r times: κr(x) := Cum(x, x, . . . , x) (where x appears r times). Univariate
r-cumulants are additive for independent random variables, i.e. κr(x + y) = κr(x) + κr(y), and
homogeneous of degree r, i.e. κr(αx) = αrκr(x).

Quasi-Orthogonalization Using Cumulant Tensors. Recalling our original notation, x = As +
b + η gives the generative ICA model. We define an operation of fourth-order tensors on matrices:
For Q ∈ Rd×d×d×d and M ∈ Rd×d, Q(M) is the matrix such that

Q(M)ij :=

d∑
k=1

d∑
l=1

Qijklmlk . (1)

We can use this operation to orthogonalize the latent random signals.
Definition 2.1. A matrix W is called a quasi-orthogonalization matrix if there exists an orthogonal
matrix R and a nonsingular diagonal matrix D such that WA = RD.

We will need the following results from [3]. Here we use Aq to denote the qth column of A.

Lemma 2.2. Let M ∈ Rd×d be an arbitrary matrix. Then, Qx(M) = ADAT where D is a
diagonal matrix with entries dqq = κ4(sq)A

T
qMAq .

Theorem 2.3. Suppose that each component of s has non-zero fourth cumulant. Let M = Qx(I),
and let C = Qx(M−1). Then C = ADAT where D is a diagonal matrix with entries dqq =
1/‖Aq‖22. In particular, C is positive definite, and for any factorization BBT of C, B−1 is a quasi-
orthogonalization matrix.

3 Quasi-Orthogonalization using Cumulant Hessians
We have seen in Theorem 2.3 a tensor-based method which can be used to quasi-orthogonalize
observed data. However, this method naı̈vely requires the estimation of O(d4) terms from data.
There is a connection between the cumulant Hessian-based techniques used in ICA [2, 11] and
the tensor-based technique for quasi-orthogonalization described in Theorem 2.3 that allows the
tensor-method to be rewritten using a series of Hessian operations. We make this connection precise
below. The Hessian version requires only O(d3) terms to be estimated from data and simplifies the
computation to consist of matrix and vector operations.

LetHu denote the Hessian operator with respect to a vector u ∈ Rd. The following lemma connects
Hessian methods with our tensor-matrix operation (a special case is discussed in [2, Section 2.1]).
Lemma 3.1. Hu(κ4(uTx)) = ADAT where dqq = 12(uTAq)

2κ4(sq).

In Lemma 3.1, the diagonal entries can be rewritten as dqq = 12κ4(sq)(A
T
q (uuT)Aq). By com-

paring with Lemma 2.2, we see that applying Qx against a symmetric, rank one matrix uuT can be
rewritten in terms of the Hessian operations: Qx(uuT) = 1

12Hu(κ4(uTx)). This formula extends
to arbitrary symmetric matrices by the following Lemma.
Lemma 3.2. Let M be a symmetric matrix with eigen decomposition UΛUT such that U =

(u1,u2, . . . ,ud) and Λ = diag(λ1, λ2, . . . , λd). Then, Qx(M) = 1
12

∑d
i=1 λiHui

κ4(uTi x).

The matrices I and M−1 in Theorem 2.3 are symmetric. As such, the tensor-based method for
quasi-orthogonalization can be rewritten using Hessian operations. This is done in Algorithm 1.

4 Gradient Iteration ICA
In the preceding sections, we discussed techniques to quasi-orthogonalize data. For this sec-
tion, we will assume that quasi-orthogonalization is accomplished, and discuss deflationary ap-
proaches that can quickly recover the directions of the independent components. Let W be a quasi-
orthogonalization matrix. Then, define y := Wx = WAs + Wη. Note that since η is Gaussian
noise, so is Wη. There exists a rotation matrix R and a diagonal matrix D such that WA = RD.
Let s̃ := Ds. The coordinates of s̃ are still independent random variables. Gaussian noise makes
recovering the scaling matrix D impossible. We aim to recover the rotation matrix R.

4

Algorithm 1 Hessian-based algorithm to generate a quasi-orthogonalization matrix.
1: function FINDQUASIORTHOGONALIZATIONMATRIX(x)
2: Let M = 1

12

∑d
i=1Huκ4(uTx)|u=ei . See Equation (4) for the estimator.

3: Let UΛUT give the eigendecomposition of M−1

4: Let C =
∑d
i=1 λiHuκ4(uTx)|u=Ui

. See Equation (4) for the estimator.
5: Factorize C as BBT .
6: return B−1
7: end function

To see why recovery of D is impossible, we note that a white Gaussian random variable η1 has
independent components. It is impossible to distinguish between the case where η1 is part of the
signal, i.e. WA(s + η1) +Wη, and the case where Aη1 is part of the additive Gaussian noise, i.e.
WAs+W (Aη1+η), when s, η1, and η are drawn independently. In the noise-free ICA setting, the
latent signal is typically assumed to have identity covariance, placing the scaling information in the
columns of A. The presence of additive Gaussian noise makes recovery of the scaling information
impossible since the latent signals become ill-defined. Following the idea popularized in FastICA,
we will discuss a deflationary technique to recover the columns of R one at a time.

Fast Recovery of a Single Independent Component. In the deflationary approach, a function f is
fixed that acts upon a directional vector u ∈ Rd. Based on some criterion (typically maximization
or minimization of f), an iterative optimization step is performed until convergence. This technique
was popularized in FastICA, which is considered fast for the following reasons:
1. As an approximate Newton method, FastICA requires computation of ∇uf and a quick-to-
compute estimate of (Hu(f))−1 at each iterative step. Due to the estimate, the computation runs in
O(Nd) time, where N is the number of samples.
2. The iterative step in FastICA has local quadratic order convergence using arbitrary functions, and
global cubic-order convergence when using the fourth cumulant [13].

We note that cubic convergence rates are not unique to FastICA and have been seen using gradient
descent (with the correct step-size) when choosing f as the fourth moment [18]. Our proposed
deflationary algorithm will be comparable with FastICA in terms of computational complexity, and
the iterative step will take on a conceptually simpler form as it only relies on ∇uκr. We provide a
derivation of fast convergence rates that relies entirely on the properties of cumulants. As cumulants
are invariant with respect to the additive Gaussian noise, the proposed methods will be admissible
for both standard and noisy ICA.

While cumulants are essentially unique with the additivity and homogeneity properties [17] when
no restrictions are made on the probability space, the preprocessing step of ICA gives additional
structure (like orthogonality and centering), providing additional admissible functions. In particular,
[20] designs “robust cumulants” which are only minimally effected by sparse noise. Welling’s robust
cumulants have versions of the additivity and homogeneity properties, and are consistent with our
update step. For this reason, we will state our results in greater generality.

Let G be a function of univariate random variables that satisfies the additivity, degree-r (r ≥ 3)
homogeneity, and (for the noisy case) the vanishing Gaussians properties of cumulants. Then for a
generic choice of input vector v, Algorithm 2 will demonstrate order r−1 convergence. In particular,
if G is κ3, then we obtain quadratic convergence; and if G is κ4, we obtain cubic convergence.
Lemma 4.1 helps explain why this is true.

Lemma 4.1. ∇vG(v · y) = r
∑d
i=1(v ·Ri)r−1G(s̃i)Ri.

If we consider what is happening in the basis of the columns of R, then up to some multiplicative
constant, each coordinate is raised to the r − 1 power and then renormalized during each step of
Algorithm 2. This ultimately leads to the order r − 1 convergence.

Theorem 4.2. If for a unit vector input v to Algorithm 2 h = arg maxi |(v ·Ri)r−2G(s̃i)| has a
unique answer, then v has order r − 1 convergence to Rh up to sign. In particular, if the following
conditions are met: (1) There exists a coordinate random variable si of s such thatG(si) 6= 0. (2) v
inputted into Algorithm 2 is chosen uniformly at random from the unit sphere Sd−1. Then Algorithm
2 converges to a column of R (up to sign) almost surely, and convergence is of order r − 1.

5

Algorithm 2 A fast algorithm to recover a single column of R when v is drawn generically from
the unit sphere. Equations (2) and (3) provide k-statistic based estimates of∇vκ3 and∇vκ4, which
can be used as practical choices of∇vG on real data.

1: function GI-ICA(v,y)
2: repeat
3: v← ∇vG(vTy)
4: v← v/‖v‖2
5: until Convergence return v
6: end function

Algorithm 3 Algorithm for ICA in the presence of Gaussian noise. Ã recovers A up to column
order and scaling. RTW is the demixing matrix for the observed random vector x.

function GAUSSIANROBUSTICA(G, x)
W = FINDQUASIORTHOGONALIZATIONMATRIX(x)
y = Wx
R columns = ∅
for i = 1 to d do

Draw v from Sd−1 ∩ span(R columns)⊥ uniformly at random.
R columns = R columns ∪ {GI-ICA(v, y)}

end for
Construct a matrix R using the elements of R columns as columns.
s̃ = RTy
Ã = (RTW)−1

return Ã, s̃
end function

By convergence up to sign, we include the possibility that v oscillates between Rh and −Rh on
alternating steps. This can occur if G(s̃i) < 0 and r is odd. Due to space limitations, the proof is
omitted.

Recovering all Independent Components. As a Corollary to Theorem 4.2 we get:
Corollary 4.3. Suppose R1, R2, . . . , Rk are known for some k < d. Suppose there exists i > k
such that G(si) 6= 0. If v is drawn uniformly at random from Sd−1 ∩ span(R1, . . . , Rk)⊥ where
Sd−1 denotes the unit sphere in Rd, then Algorithm 2 with input v converges to a new column of R
almost surely.

Since the indexing of R is arbitrary, Corollary 4.3 gives a solution to noisy ICA, in Algorithm
3. In practice (not required by the theory), it may be better to enforce orthogonality between the
columns of R, by orthogonalizing v against previously found columns of R at the end of each step
in Algorithm 2. We expect the fourth or third cumulant function will typically be chosen for G.

5 Time Complexity Analysis and Estimation of Cumulants
To implement Algorithms 1 and 2 requires the estimation of functions from data. We will limit
our discussion to estimation of the third and fourth cumulants, as lower order cumulants are more
statistically stable to estimate than higher order cumulants. κ3 is useful in Algorithm 2 for non-
symmetric distributions. However, since κ3(si) = 0 whenever si is a symmetric distribution, it is
plausible that κ3 would not recover all columns of R. When s is suspected of being symmetric, it
is prudent to use κ4 for G. Alternatively, one can fall back to κ4 from κ3 when κ3 is detected to be
near 0.

Denote by z(1), z(2), . . . , z(N) the observed samples of a random variable z. Given a sample, each
cumulant can be estimated in an unbiased fashion by its k-statistic. Denote by kr(z

(i)) the k-
statistic sample estimate of κr(z). Letting mr(z

(i)) := 1
N

∑N
i=1(z(i) − z̄)r give the rth sample

central moment, then

k3(z(i)) :=
N2m3(z(i))

(N − 1)(N − 2)
, k4(z(i)) := N2 (N + 1)m4(z(i))− 3(N − 1)m2(z(i))2

(N − 1)(N − 2)(N − 3)

6

gives the third and fourth k-statistics [15]. However, we are interested in estimating the gradients (for
Algorithm 2) and Hessians (for Algorithm 1) of the cumulants rather than the cumulants themselves.
The following Lemma shows how to obtain unbiased estimates:

Lemma 5.1. Let z be a d-dimensional random vector with finite moments up to order r. Let z(i) be
an iid sample of z. Let α ∈ Nd be a multi-index. Then ∂αukr(u · z(i)) is an unbiased estimate for
∂αuκr(u · z).

If we mean-subtract (via the sample mean) all observed random variables, then the resulting esti-
mates are:

∇uk3(u · y) = (N − 1)−1(N − 2)−13N

N∑
i=1

(u · y(i))2y(i) (2)

∇uk4(u · y) =
N2

(N − 1)(N − 2)(N − 3)

{
4
N + 1

N

(
N∑
i=1

((u · y(i)))3y(i)

)

−12
N − 1

N2

(
N∑
i=1

(u · y(i))2

)(
N∑
i=1

(u · y(i))y(i)

)}
(3)

Huk4(u · x) =
12N2

(N − 1)(N − 2)(N − 3)

{
N + 1

N

N∑
i=1

((u · x(i)))2(xxT)(i) (4)

−N − 1

N2

N∑
i=1

(u · x(i))2
N∑
i=1

(xxT)(i) − 2N − 2

N2

(
N∑
i=1

(u · x(i))x(i)

)(
N∑
i=1

(u · x(i))x(i)

)T
Using (4) to estimate Huκ4(uTx) from data when implementing Algorithm 1, the resulting quasi-
orthogonalization algorithm runs in O(Nd3) time. Using (2) or (3) to estimate∇uG(vTy) (with G
chosen to be κ3 or κ4 respectively) when implementing Algorithm 2 gives an update step that runs
in O(Nd) time. If t bounds the number of iterations to convergence in Algorithm 2, then O(Nd2t)
steps are required to recover all columns of R once quasi-orthogonalization has been achieved.

6 Simulation Results
In Figure 1, we compare our algorithms to the baselines JADE [7] and versions of FastICA [10],
using the code made available by the authors. Except for the choice of the contrast function for
FastICA the baselines were run using default settings. All tests were done using artificially generated
data. In implementing our algorithms (available at [19]), we opted to enforce orthogonality during
the update step of Algorithm 2 with previously found columns of R. In Figure 1, comparison on
five distributions indicates that each of the independent coordinates was generated from a distinct
distribution among the Laplace distribution, the Bernoulli distribution with parameter 0.5, the t-
distribution with 5 degrees of freedom, the exponential distribution, and the continuous uniform
distribution. Most of these distributions are symmetric, making GI-κ3 inadmissible.

When generating data for the ICA algorithm, we generate a random mixing matrix A with condition
number 10 (minimum singular value 1 and maximum singular value 10), and intermediate singular
values chosen uniformly at random. The noise magnitude indicates the strength of an additive white
Gaussian noise. We define 100% noise magnitude to mean variance 10, with 25% noise and 50%
noise indicating variances 2.5 and 5 respectively. Performance was measured using the Amari Index
introduced in [1]. Let B̂ denote the approximate demixing matrix returned by an ICA algorithm,
and let M = B̂A. Then, the Amari index is given by: E :=

∑n
i=1

∑n
j=1

(
|mij |

maxk |mik| − 1
)

+∑n
j=1

∑n
i=1

(
|mij |

maxk |mkj | − 1
)
. The Amari index takes on values between 0 and the dimensionality

d. It can be roughly viewed as the distance of M from the nearest scaled permutation matrix PD
(where P is a permutation matrix and D is a diagonal matrix).

From the noiseles data, we see that quasi-orthogonalization requires more data than whitening in
order to provide accurate results. Once sufficient data is provided, all fourth order methods (GI-κ4,
JADE, and κ4-FastICA) perform comparably. The difference between GI-κ4 and κ4-FastICA is not

7

 100 1000 10000 100000
0.01

0.10

1.00

Number of Samples

A
m

ar
i I

nd
ex

ICA Comparison on 5 distributions (d=5, noisless data)

GI−κ

4
 (white)

GI−κ
4
 (quasi−orthogonal)

κ
4
−FastICA

log cosh−FastICA
JADE

 100 1000 10000 100000
0.01

0.10

1.00

Number of Samples

A
m

ar
i I

nd
ex

ICA Comparison on 5 distributions (d=5, 25% noise magnitude)

GI−κ

4
 (white)

GI−κ
4
 (quasi−orthogonal)

κ
4
−FastICA

log cosh−FastICA
JADE

 100 1000 10000 100000
0.01

0.10

1.00

Number of Samples

A
m

ar
i I

nd
ex

ICA Comparison on 5 distributions (d=5, 50% noise magnitude)

GI−κ

4
 (white)

GI−κ
4
 (quasi−orthogonal)

κ
4
−FastICA

log cosh−FastICA
JADE

 100 1000 10000 100000
 0.01

 0.10

 1.00

10.00

Number of Samples

A
m

ar
i I

nd
ex

ICA Comparison on 5 distributions (d=10, noisless data)

GI−κ

4
 (white)

GI−κ
4
 (quasi−orthogonal)

κ
4
−FastICA

log cosh−FastICA
JADE

 100 1000 10000 100000
 0.01

 0.10

 1.00

10.00

Number of Samples

A
m

ar
i I

nd
ex

ICA Comparison on 5 distributions (d=10, 25% noise magnitude)

GI−κ

4
 (white)

GI−κ
4
 (quasi−orthogonal)

κ
4
−FastICA

log cosh−FastICA
JADE

 100 1000 10000 100000
 0.01

 0.10

 1.00

10.00

Number of Samples

A
m

ar
i I

nd
ex

ICA Comparison on 5 distributions (d=10, 50% noise magnitude)

GI−κ

4
 (white)

GI−κ
4
 (quasi−orthogonal)

κ
4
−FastICA

log cosh−FastICA
JADE

Figure 1: Comparison of ICA algorithms under various levels of noise. White and quasi-orthogonal
refer to the choice of the first step of ICA. All baseline algorithms use whitening. Reported Amari
indices denote the mean Amari index over 50 runs on different draws of bothA and the data. d gives
the data dimensionality, with two copies of each distribution used when d = 10.

statistically significant over 50 runs with 100 000 samples. We note that GI-κ4 under whitening and
κ4-FastICA have the same update step (up to a slightly different choice of estimators), with GI-κ4
differing to allow for quasi-orthogonalization. Where provided, the error bars give a 2σ confidence
interval on the mean Amari index. In all cases, error bars for our algorithms are provided, and error
bars for the baseline algorithms are provided when they do not hinder readability.

It is clear that all algorithms degrade with the addition of Gaussian noise. However, GI-κ4 un-
der quasi-orthogonalization degrades far less when given sufficient samples. For this reason, the
quasi-orthogonalized GI-κ4 outperforms all other algorithms (given sufficient samples) including
the log cosh-FastICA, which performs best in the noiseless case. Contrasting the performance of GI-
κ4 under whitening with itself under quasi-orthogonalization, it is clear that quasi-orthogonalization
is necessary to be robust to Gaussian noise.

Run times were indeed reasonably fast. For 100 000 samples on the varied distributions (d = 5) with
50% Gaussian noise magnitude, GI-κ4 (including the orthogonalization step) had an average running
time2 of 0.19 seconds using PCA whitening, and 0.23 seconds under quasi-orthogonalization. The
corresponding average number of iterations to convergence per independent component (at 0.0001
error) were 4.16 and 4.08. In the following table, we report the mean number of steps to convergence
(per independent component) over the 50 runs for the 50% noise distribution (d = 5), and note that
once sufficiently many samples were taken, the number of steps to convergence becomes remarkably
small.

Number of data pts 500 1000 5000 10000 50000 100000
whitening+GI-κ4: mean num steps 11.76 5.92 4.99 4.59 4.35 4.16
quasi-orth.+GI-κ4: mean num steps 213.92 65.95 4.48 4.36 4.06 4.08

7 Acknowledgments

This work was supported by NSF grant IIS 1117707.

2 Using a standard desktop with an i7-2600 3.4 GHz CPU and 16 GB RAM.

8

References

[1] S. Amari, A. Cichocki, H. H. Yang, et al. A new learning algorithm for blind signal separation.
Advances in neural information processing systems, pages 757–763, 1996.

[2] S. Arora, R. Ge, A. Moitra, and S. Sachdeva. Provable ICA with unknown Gaussian noise,
with implications for Gaussian mixtures and autoencoders. In NIPS, pages 2384–2392, 2012.

[3] M. Belkin, L. Rademacher, and J. Voss. Blind signal separation in the presence of Gaussian
noise. In JMLR W&CP, volume 30: COLT, pages 270–287, 2013.

[4] C. M. Bishop. Variational principal components. Proc. Ninth Int. Conf. on Articial Neural
Networks. ICANN, 1:509–514, 1999.

[5] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? CoRR,
abs/0912.3599, 2009.

[6] J. Cardoso and A. Souloumiac. Blind beamforming for non-Gaussian signals. In Radar and
Signal Processing, IEE Proceedings F, volume 140, pages 362–370. IET, 1993.

[7] J.-F. Cardoso and A. Souloumiac. Matlab JADE for real-valued data v 1.8. http://
perso.telecom-paristech.fr/˜cardoso/Algo/Jade/jadeR.m, 2005. [On-
line; accessed 8-May-2013].

[8] P. Comon and C. Jutten, editors. Handbook of Blind Source Separation. Academic Press, 2010.
[9] X. Ding, L. He, and L. Carin. Bayesian robust principal component analysis. Image Process-

ing, IEEE Transactions on, 20(12):3419–3430, 2011.
[10] H. Gävert, J. Hurri, J. Särelä, and A. Hyvärinen. Matlab FastICA v 2.5. http://

research.ics.aalto.fi/ica/fastica/code/dlcode.shtml, 2005. [Online;
accessed 1-May-2013].

[11] D. Hsu and S. M. Kakade. Learning mixtures of spherical Gaussians: Moment methods and
spectral decompositions. In ITCS, pages 11–20, 2013.

[12] A. Hyvärinen. Independent component analysis in the presence of Gaussian noise by maxi-
mizing joint likelihood. Neurocomputing, 22(1-3):49–67, 1998.

[13] A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis.
IEEE Transactions on Neural Networks, 10(3):626–634, 1999.

[14] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and applications.
Neural Networks, 13(4-5):411–430, 2000.

[15] J. F. Kenney and E. S. Keeping. Mathematics of Statistics, part 2. van Nostrand, 1962.
[16] H. Li and T. Adali. A class of complex ICA algorithms based on the kurtosis cost function.

IEEE Transactions on Neural Networks, 19(3):408–420, 2008.
[17] L. Mafttner. What are cumulants. Documenta Mathematica, 4:601–622, 1999.
[18] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU

signatures. J. Cryptology, 22(2):139–160, 2009.
[19] J. Voss, L. Rademacher, and M. Belkin. Matlab GI-ICA implementation. http://

sourceforge.net/projects/giica/, 2013. [Online].
[20] M. Welling. Robust higher order statistics. In Tenth International Workshop on Artificial

Intelligence and Statistics, pages 405–412, 2005.
[21] A. Yeredor. Blind source separation via the second characteristic function. Signal Processing,

80(5):897–902, 2000.
[22] V. Zarzoso and P. Comon. How fast is FastICA. EUSIPCO, 2006.

9

http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
http://sourceforge.net/projects/giica/
http://sourceforge.net/projects/giica/

