
Active Learning for Probabilistic Hypotheses Using
the Maximum Gibbs Error Criterion

Nguyen Viet Cuong Wee Sun Lee Nan Ye
Department of Computer Science
National University of Singapore

{nvcuong,leews,yenan}@comp.nus.edu.sg

Kian Ming A. Chai Hai Leong Chieu
DSO National Laboratories, Singapore

{ckianmin,chaileon}@dso.org.sg

Abstract

We introduce a new objective function for pool-based Bayesian active learning
with probabilistic hypotheses. This objective function, called the policy Gibbs
error, is the expected error rate of a random classifier drawn from the prior dis-
tribution on the examples adaptively selected by the active learning policy. Exact
maximization of the policy Gibbs error is hard, so we propose a greedy strategy
that maximizes the Gibbs error at each iteration, where the Gibbs error on an
instance is the expected error of a random classifier selected from the posterior
label distribution on that instance. We apply this maximum Gibbs error criterion
to three active learning scenarios: non-adaptive, adaptive, and batch active learn-
ing. In each scenario, we prove that the criterion achieves near-maximal policy
Gibbs error when constrained to a fixed budget. For practical implementations,
we provide approximations to the maximum Gibbs error criterion for Bayesian
conditional random fields and transductive Naive Bayes. Our experimental re-
sults on a named entity recognition task and a text classification task show that the
maximum Gibbs error criterion is an effective active learning criterion for noisy
models.

1 Introduction

In pool-based active learning [1], we select training data from a finite set (called a pool) of unlabeled
examples and aim to obtain good performance on the set by asking for as few labels as possible. If a
large enough pool is sampled from the true distribution, good performance of a classifier on the pool
implies good generalization performance of the classifier. Previous theoretical works on Bayesian
active learning mainly deal with the noiseless case, which assumes a prior distribution on a collection
of deterministic mappings from observations to labels [2, 3]. A fixed deterministic mapping is then
drawn from the prior, and it is used to label the examples.

In this paper, probabilistic hypotheses, rather than deterministic ones, are used to label the examples.
We formulate the objective as a maximum coverage objective with a fixed budget: with a budget of
k queries, we aim to select k examples such that the policy Gibbs error is maximal. The policy
Gibbs error of a policy is the expected error rate of a Gibbs classifier1 on the set adaptively selected
by the policy. The policy Gibbs error is a lower bound of the policy entropy, a generalization of the
Shannon entropy to general (both adaptive and non-adaptive) policies. For non-adaptive policies,

1A Gibbs classifier samples a hypothesis from the prior for labeling.

1

x1

x2

x4

y1 = 1 y1 = 2 · · ·

y2 = 1 y2 = 2 · · ·

1

2x
4x

1x

3x 4x 3x 2x

11 =y
21 =y

12 =y 14 =y

. . .

22 =y
. . .

24 =y
. . .

Figure 1: An example of a non-adaptive policy tree (left) and an adaptive policy tree (right).

the policy Gibbs error reduces to the Gibbs error for sets, which is a special case of a measure of
uncertainty called the Tsallis entropy [4].

By maximizing policy Gibbs error, we hope to maximize the policy entropy, whose maximality
implies the minimality of the posterior label entropy of the remaining unlabeled examples in the
pool. Besides, by maximizing policy Gibbs error, we also aim to obtain a small expected error of
a posterior Gibbs classifier (which samples a hypothesis from the posterior instead of the prior for
labeling). Small expected error of the posterior Gibbs classifier is desirable as it upper bounds the
Bayes error but is at most twice of it.

Maximizing policy Gibbs error is hard, and we propose a greedy criterion, the maximum Gibbs error
criterion (maxGEC), to solve it. With this criterion, the next query is made on the candidate (which
may be one or several examples) that has maximum Gibbs error, the probability that a randomly
sampled labeling does not match the actual labeling. We investigate this criterion in three settings:
the non-adaptive setting, the adaptive setting and batch setting (also called batch mode setting) [5].
In the non-adaptive setting, the set of examples is not labeled until all examples in the set have all
been selected. In the adaptive setting, the examples are labeled as soon as they are selected, and
the new information is used to select the next example. In the batch setting, we select a batch of
examples, query their labels and proceed to select the next batch taking into account the labels. In all
these settings, we prove that maxGEC is near-optimal compared to the best policy that has maximal
policy Gibbs error in the setting.

We examine how to compute the maxGEC criterion, particularly for large structured probabilistic
models such as the conditional random fields [6]. When inference in the conditional random field
can be done efficiently, we show how to compute an approximation to the Gibbs error by sampling
and efficient inference. We provide an approximation for maxGEC in the non-adaptive and batch
settings with Bayesian transductive Naive Bayes model. Finally, we conduct pool-based active
learning experiments using maxGEC for a named entity recognition task with conditional random
fields and a text classification task with Bayesian transductive Naive Bayes. The results show good
performance of maxGEC in terms of the area under the curve (AUC).

2 Preliminaries

Let X be a set of examples, Y be a fixed finite set of labels, and H be a set of probabilistic hy-
potheses. We assume H is finite, but our results extend readily to general H. For any probabilistic
hypothesis h ∈ H, its application to an example x ∈ X is a categorical random variable with sup-
port Y , and we write P[h(x) = y|h] for the probability that h(x) has value y ∈ Y . We extend the
notation to any sequence S of examples from X and write P[h(S) = y|h] for the probability that
h(S) has a labeling y ∈ Y |S|, where Y |S| is the set of all labelings of S. We operate within the
Bayesian setting and assume a prior probability p0[h] on H. We use pD[h] to denote the posterior
p0[h|D] after observing a set D of labeled examples from X × Y .

A pool-based active learning algorithm is a policy for choosing training examples from a pool
X ⊆ X . At the beginning, a fixed labeling y∗ of X is given by a hypothesis h drawn from the
prior p0[h] and is hidden from the learner. Equivalently, y∗ can be drawn from the prior label
distribution p0[y∗;X]. For any distribution p[h], we use p[y;S] to denote the probability that ex-
amples in S are assigned the labeling y by a hypothesis drawn randomly from p[h]. Formally,
p[y;S] def=

∑
h∈H p[h]P[h(S) = y|h]. When S is a singleton {x}, we write p[y;x] for p[{y}; {x}].

2

During the learning process, each time the learner selects an unlabeled example, its label will be
revealed to the learner. A policy for choosing training examples is a mapping from a set of labeled
examples to an unlabeled example to be queried. This can be represented by a policy tree, where
a node represents the next example to be queried, and each edge from the node corresponds to a
possible label. We use policy and policy tree as synonyms. Figure 1 illustrates two policy trees
with their top three levels: in the non-adaptive setting, the policy ignores the labels of the previously
selected examples, so all examples at the same depth of the policy tree are the same; in the adaptive
setting, the policy takes into account the observed labels when choosing the next example.

A full policy tree for a pool X is a policy tree of height |X|. A partial policy tree is a subtree of
a full policy tree with the same root. The class of policies of height k will be denoted by Πk. Our
query criterion gives a method to build a full policy tree one level at a time. The main building block
is the probability distribution pπ0 [·] over all possible paths from the root to the leaves for any (full
or partial) policy tree π. This distribution over paths is induced from the uncertainty in the fixed
labeling y∗ for X: since y∗ is drawn randomly from p0[y∗;X], the path ρ followed from the root
to a leaf of the policy tree during the execution of π is also a random variable. If xρ (resp. yρ) is the
sequence of examples (resp. labels) along path ρ, then the probability of ρ is pπ0 [ρ] def= p0[yρ;xρ].

3 Maximum Gibbs Error Criterion for Active Learning

A commonly used objective for active learning in the non-adaptive setting is to choose k training
examples such that their Shannon entropy is maximal, as this reduces uncertainty in the later stage.
We first give a generalization of the concept of Shannon entropy to general (both adaptive and non-
adaptive) policies. Formally, the policy entropy of a policy π is

H(π) def= Eρ∼pπ0 [− ln pπ0 [ρ]].

From this definition, policy entropy is the Shannon entropy of the paths in the policy. The policy
entropy reduces to the Shannon entropy on a set of examples when the policy is non-adaptive. The
following result gives a formal statement that maximizing policy entropy minimizes the uncertainty
on the label of the remaining unlabeled examples in the pool. Suppose a path ρ has been observed,
the labels of the remaining examples in X \ xρ follow the distribution pρ[· ;X \ xρ], where pρ is
the posterior obtained after observing (xρ, yρ). The entropy of this distribution will be denoted by
G(ρ) and will be called the posterior label entropy of the remaining examples given ρ. Formally,
G(ρ) = −

∑
y pρ[y;X \ xρ] ln pρ[y;X \ xρ], where the summation is over all possible labelings y

of X \ xρ. The posterior label entropy of a policy π is defined as G(π) = Eρ∼pπ0G(ρ).

Theorem 1. For any k ≥ 1, if a policy π in Πk maximizes H(π), then π minimizes the posterior
label entropy G(π).

Proof. It can be easily verified that H(π) + G(π) is the Shannon entropy of the label distribution
p0[· ;X], which is a constant (detailed proof is in the supplementary). Thus, the theorem follows.

The usual maximum Shannon entropy criterion, which selects the next example x maximizing
Ey∼pD[y;x][− ln pD[y;x]] where D is the previously observed labeled examples, can be thought of
as a greedy heuristic for building a policy π maximizingH(π). However, it is still unknown whether
this greedy criterion has any theoretical guarantee, except for the non-adaptive case.

In this paper, we introduce a new objective for active learning: the policy Gibbs error. This new
objective is a lower bound of the policy entropy and there are near-optimal greedy algorithms to
optimize it. Intuitively, the policy Gibbs error of a policy π is the expected probability for a Gibbs
classifier to make an error on the set adaptively selected by π. Formally, we define the policy Gibbs
error of a policy π as

V (π) def= Eρ∼pπ0 [1− pπ0 [ρ]], (1)

In the above equation, 1 − pπ0 [ρ] is the probability that a Gibbs classifier makes an error on the
selected set along the path ρ. Theorem 2 below, which is straightforward from the inequality
x ≥ 1 + lnx, states that the policy Gibbs error is a lower bound of the policy entropy.
Theorem 2. For any (full or partial) policy π, we have V (π) ≤ H(π).

3

Given a budget of k queries, our proposed objective is to find π∗ = arg maxπ∈Πk V (π), the height
k policy with maximum policy Gibbs error. By maximizing V (π), we hope to maximize the policy
entropy H(π), and thus minimize the uncertainty in the remaining examples. Furthermore, we
also hope to obtain a small expected error of a posterior Gibbs classifier, which upper bounds the
Bayes error but is at most twice of it. Using this objective, we propose greedy algorithms for
active learning that are provably near-optimal for probabilistic hypotheses. We will consider the
non-adaptive, adaptive and batch settings.

3.1 The Non-adaptive Setting

In the non-adaptive setting, the policy π ignores the observed labels: it never updates the posterior.
This is equivalent to selecting a set of examples before any labeling is done. In this setting, the
examples selected along all paths of π are the same. Let xπ be the set of examples selected by π.
The Gibbs error of a non-adaptive policy π is simply

V (π) = Ey∼p0[· ;xπ][1− p0[y;xπ]].

Thus, the optimal non-adaptive policy selects a set S of examples maximizing its Gibbs error, which
is defined by εp0g (S) def= 1−

∑
y p0[y;S]2.

In general, the Gibbs error of a distribution P is 1−
∑
i P [i]2, where the summation is over elements

in the support of P . The Gibbs error is a special case of the Tsallis entropy used in nonextensive
statistical mechanics [4] and is known to be monotone submodular [7]. From the properties of
monotone submodular functions [8], the greedy non-adaptive policy that selects the next example

xi+1 = arg max
x
{εp0g (Si ∪ {x})} = arg max

x
{1−

∑
y

p0[y;Si ∪ {x}]2}, (2)

where Si is the set of previously selected examples, is near-optimal compared to the best non-
adaptive policy. This is stated below.
Theorem 3. Given a budget of k ≥ 1 queries, let πn be the non-adaptive policy in Πk selecting
examples using Equation (2), and let π∗n be the non-adaptive policy in Πk with the maximum policy
Gibbs error. Then, V (πn) > (1− 1/e)V (π∗n).

3.2 The Adaptive Setting

In the adaptive setting, a policy takes into account the observed labels when choosing the next
example. This is done via the posterior update after observing the label of a selected example.
The adaptive setting is the most common setting for active learning. We now describe a greedy
adaptive algorithm for this setting that is near-optimal. Assume that the current posterior obtained
after observing the labeled examples D is pD. Our greedy algorithm selects the next example x that
maximizes εpDg (x):

x∗ = arg max
x

εpDg (x) = arg max
x
{1−

∑
y∈Y

pD[y;x]2}. (3)

From the definition of εpDg in Section 3.1, εpDg (x) is in fact the Gibbs error of a 1-step policy with
respect to the prior pD. Thus, we call this greedy criterion the adaptive maximum Gibbs error
criterion (maxGEC). Note that in binary classification where |Y| = 2, maxGEC selects the same
example as the maximum Shannon entropy and the least confidence criteria. However, they are
different in the multi-class case. Theorem 4 below states that maxGEC is near-optimal compared to
the best adaptive policy with respect to the objective in Equation (1).
Theorem 4. Given a budget of k ≥ 1 queries, let πmaxGEC be the adaptive policy in Πk selecting
examples using maxGEC and π∗ be the adaptive policy in Πk with the maximum policy Gibbs error.
Then, V (πmaxGEC) > (1− 1/e)V (π∗).

The proof for this theorem is in the supplementary material. The main idea of the proof is to reduce
probabilistic hypotheses to deterministic ones by expanding the hypothesis space. For deterministic
hypotheses, we show that maxGEC is equivalent to maximizing the version space reduction objec-
tive, which is known to be adaptive monotone submodular [2]. Thus, we can apply a known result
for optimizing adaptive monotone submodular function [2] to obtain Theorem 4.

4

Algorithm 1 Batch maxGEC for Bayesian Batch Active Learning
Input: Unlabeled pool X , prior p0, number of iterations k, and batch size s.
for i = 0 to k − 1 do
S ← ∅
for j = 0 to s− 1 do
x∗ ← arg maxx ε

pi
g (S ∪ {x}); S ← S ∪ {x∗}; X ← X \ {x∗}

end for
yS ← Query-labels(S); pi+1 ← Posterior-update(pi, S, yS)

end for

3.3 The Batch Setting

In the batch setting [5], we query the labels of s (instead of 1) examples each time, and we do
this for a given number of k iterations. After each iteration, we query the labeling of the selected
batch and update the posterior based on this labeling. The new posterior can be used to select the
next batch of examples. A non-adaptive policy can be seen as a batch policy that selects only one
batch. Algorithm 1 describes a greedy algorithm for this setting which we call the batch maxGEC
algorithm. At iteration i of the algorithm with the posterior pi, the batch S is first initialized to be
empty, then s examples are greedily chosen one at a time using the criterion

x∗ = arg max
x

εpig (S ∪ {x}). (4)

This is equivalent to running the non-adaptive greedy algorithm in Section 3.1 to select each batch.
Query-labels(S) returns the true labeling yS of S and Posterior-update(pi, S, yS) returns the new
posterior obtained from the prior pi after observing yS .

The following theorem states that batch maxGEC is near optimal compared to the best batch policy
with respect to the objective in Equation (1). The proof for this theorem is in the supplementary
material. The proof also makes use of the reduction to deterministic hypotheses and the adaptive
submodularity of version space reduction.
Theorem 5. Given a budget of k batches of size s, let πmaxGEC

b be the batch policy selecting k
batches using batch maxGEC and π∗b be the batch policy selecting k batches with maximum policy
Gibbs error. Then, V (πmaxGEC

b) > (1− e−(e−1)/e)V (π∗b).

This theorem has a different bounding constant than those in Theorems 3 and 4 because it uses two
levels of approximation to compute the batch policy: at each iteration, it approximates the optimal
batch by greedily choosing one example at a time using equation (4) (1st approximation). Then it
uses these chosen batches to approximate the optimal batch policy (2nd approximation). In contrast,
the fully adaptive case has batch size 1 and only needs the 2nd approximation, while the non-adaptive
case chooses 1 batch and only needs the 1st approximation.

In non-adaptive and batch settings, our algorithms need to sum over all labelings of the previously
selected examples in a batch to choose the next example. This summation is usually expensive and
it restricts the algorithms to small batches. However, we note that small batches may be preferred in
some real problems. For example, if there is a small number of annotators and labeling one example
takes a long time, we may want to select a batch size that matches the number of annotators. In
this case, the annotators can label the examples concurrently while we can make use of the labels as
soon as they are available. It would take a longer time to label a larger batch and we cannot use the
labels until all the examples in the batch are labeled.

4 Computing maxGEC

We now discuss how to compute maxGEC and batch maxGEC for some probabilistic models. Com-
puting the values is often difficult and we discuss some sampling methods for this task.

4.1 MaxGEC for Bayesian Conditional Exponential Models
A conditional exponential model defines the conditional probability Pλ[~y|~x] of a structured la-
bels ~y given a structured inputs ~x as Pλ[~y|~x] = exp (

∑m
i=1 λiFi(~y, ~x)) /Zλ(~x), where λ =

5

Algorithm 2 Approximation for Equation (4).
Input: Selected unlabeled examples S, current unlabeled example x, current posterior pcD.
Sample M label vectors (yi)M−1

i=0 of (X \T)∪T from pcD using Gibbs sampling and set r ← 0.
for i = 0 to M − 1 do

for y ∈ Y do
p̂cD[h(S) = yiS ∧ h(x) = y]←M−1

∣∣∣{yj | yjS = yiS ∧ yj{x} = y
}∣∣∣

r ← r + (p̂cD[h(S) = yiS ∧ h(x) = y])2

end for
end for
return 1− r

(λ1, λ2, . . . , λm) is the parameter vector, Fi(~y, ~x) is the total score of the i-th feature, and Zλ(~x) =∑
~y exp (

∑m
i=1 λiFi(~y, ~x)) is the partition function. A well-known conditional exponential model

is the linear-chain conditional random field (CRF) [6] in which ~x and ~y both have sequence struc-
tures. That is, ~x = (x1, x2, . . . , x|~x|) ∈ X |~x| and ~y = (y1, y2, . . . , y|~x|) ∈ Y |~x|. In this model,
Fi(~y, ~x) =

∑|~x|
j=1 fi(yj , yj−1, ~x) where fi(yj , yj−1, ~x) is the score of the i-th feature at position j.

In the Bayesian setting, we assume a prior p0[λ] =
∏m
i=1 p0[λi] on λ, where p0[λi] = N (λi|0, σ2)

for a known σ. After observing the labeled examplesD = {(~xj , ~yj)}tj=1, we can obtain the posterior

pD[λ] = p0[λ|D] ∝
t∏

j=1

1

Zλ(~xj)
exp

(
m∑
i=1

λiFi(~yj , ~xj)

)
exp

(
−1

2

m∑
i=1

(
λi
σ

)2
)
.

For active learning, we need to estimate the Gibbs error in Equation (3) from the pos-
terior pD. For each ~x, we can approximate the Gibbs error εpDg (~x) = 1−

∑
~y pD[~y; ~x]2

by sampling N hypotheses λ1, λ2, . . . , λN from the posterior pD. In this case,
εpDg (~x) ≈ 1−N−2

∑N
j=1

∑N
t=1 Zλj+λt(~x)/Zλj (~x)Zλt(~x). The derivation for this formula is in

the supplementary material. If we only use the MAP hypothesis λ∗ to approximate the Gibbs error
(i.e. the non-Bayesian setting), then N = 1 and εpDg (~x) ≈ 1− Z2λ∗(~x)/Zλ∗(~x)2.

This approximation can be done efficiently if we can compute the partition functions Zλ(~x) effi-
ciently for any λ. This condition holds for a wide range of models including logistic regression,
linear-chain CRF, semi-Markov CRF [9], and sparse high-order semi-Markov CRF [10].

4.2 Batch maxGEC for Bayesian Transductive Naive Bayes
We discuss an algorithm to approximate batch maxGEC for non-adaptive and batch active learning
with Bayesian transductive Naive Bayes. First, we describe the Bayesian transductive Naive Bayes
model for text classification. Let Y ∈ Y be a random variable denoting the label of a document
and W ∈ W be a random variable denoting a word. In a Naive Bayes model, the parameters are
θ = {θy}y∈Y ∪ {θw|y}w∈W,y∈Y , where θy = P[Y = y] and θw|y = P[W = w|Y = y]. For a
document X and a label Y , if X = {W1,W2, . . . ,W|X|} where Wi is a word in the document, we
model the joint distribution P[X,Y] = θY

∏|X|
i=1 θWi|Y .

In the Bayesian setting, we have a prior p0[θ] such that θy ∼ Dirichlet(α) and θw|y ∼ Dirichlet(αy)
for each y. When we observe the labeled documents, we update the posterior by counting the labels
and the words in each document label. The posterior parameters also follow Dirichlet distributions.
Let X be the original pool of training examples and T be the unlabeled testing examples. In trans-
ductive setting, we work with the conditional prior pc0[θ] = p0[θ|X; T]. For a set D = (T,yT) of
labeled examples where T ⊆ X is the set of unlabeled examples and yT is the labeling of T , the
conditional posterior is pcD[θ] = p0[θ|X; T ;D] = pD[θ|(X \ T) ∪ T], where pD[θ] = p0[θ|D] is
the Dirichlet posterior of the non-transductive model. To implement the batch maxGEC algorithm,
we need to estimate the Gibbs error in Equation (4) from the conditional posterior. Let S be the
currently selected batch. For each unlabeled example x /∈ S, we need to estimate:

1−
∑
yS ,y

(pcD [h(S) = yS ∧ h(x) = y])
2

= 1− EyS

[∑
y (pcD [h(S) = yS ∧ h(x) = y])

2

pcD[yS ;S]

]
,

6

Table 1: AUC of different learning algorithms with batch size s = 10.

Task TPass maxGEC LC NPass LogPass LogFisher

alt.atheism/comp.graphics 87.43 91.69 91.66 84.98 91.63 93.92
talk.politics.guns/talk.politics.mideast 84.92 92.03 92.16 80.80 86.07 88.36

comp.sys.mac.hardware/comp.windows.x 73.17 93.60 92.27 74.41 85.87 88.71
rec.motorcycles/rec.sport.baseball 93.82 96.40 96.23 92.33 89.46 93.90

sci.crypt/sci.electronics 60.46 85.51 85.86 60.85 82.89 87.72
sci.space/soc.religion.christian 92.38 95.83 95.45 89.72 91.16 94.04

soc.religion.christian/talk.politics.guns 91.57 95.94 95.59 85.56 90.35 93.96
Average 83.39 93.00 92.75 81.24 88.21 91.52

where the expectation is with respect to the distribution pcD[yS ;S]. We can use Gibbs sampling
to approximate this expectation. First, we sample M label vectors y(X\T)∪T of the remaining
unlabeled examples from pcD using Gibbs sampling. Then, for each yS , we estimate pcD[yS ;S] by
counting the fraction of the M sampled vectors consistent with yS . For each yS and y, we also
estimate pcD [h(S) = yS ∧ h(x) = y] by counting the fraction of the M sampled vectors consistent
with both yS and y on S ∪ {x}. This approximation is equivalent to Algorithm 2. In the algorithm,
yiS is the labeling of S according to yi.

5 Experiments

5.1 Named Entity Recognition (NER) with CRF

In this experiment, we consider the NER task with the Bayesian CRF model described in Section
4.1. We use a subset of the CoNLL 2003 NER task [11] which contains 1928 training and 969
test sentences. Following the setting in [12], we let the cost of querying the label sequence of each
sentence be 1. We implement two versions of maxGEC with the approximation algorithm in Section
4.1: the first version approximates Gibbs error by using only the MAP hypothesis (maxGEC-MAP)
and the second version approximates Gibbs error by using 50 hypotheses sampled from the poste-
rior (maxGEC-50). We sample the hypotheses for maxGEC-50 from the posterior by Metropolis-
Hastings algorithm with the MAP hypothesis as the initial point.

We compare the maxGEC algorithms with 4 other learning criteria: passive learner (Passive), active
learner which chooses the longest unlabeled sequence (Longest), active learner which chooses the
unlabeled sequence with maximum Shannon entropy (SegEnt), and active learner which chooses the
unlabeled sequence with the least confidence (LeastConf). For SegEnt and LeastConf, the entropy
and confidence are estimated from the MAP hypothesis. For all the algorithms, we use the MAP
hypothesis for Viterbi decoding. To our knowledge, there is no simple way to compute SegEnt or
LeastConf criteria from a finite sample of hypotheses except for using only the MAP estimation.
The difficulty is to compute a summation (minimization for LeastConf) over all the outputs ~y in the
complex structured models. For maxGEC, the summation can be rearranged to obtain the partition
functions, which can be computed efficiently using known inference algorithms. This is thus an
advantage of using maxGEC.

We compare the total area under the F1 curve (AUC) for each algorithm after querying the first 500
sentences. As a percentage of the maximum score of 500, algorithms Passive, Longest, SegEnt,
LeastConf, maxGEC-MAP and maxGEC-50 attain 72.8, 67.0, 75.4, 75.5, 75.8 and 76.0 respec-
tively. Hence, the maxGEC algorithms perform better than all the other algorithms, and significantly
so over the Passive and Longest algorithms.

5.2 Text Classification with Bayesian Transductive Naive Bayes

In this experiment, we consider the text classification model in Section 4.2 with the meta-parameters
α = (0.1, . . . , 0.1) and αy = (0.1, . . . , 0.1) for all y. We implement batch maxGEC (maxGEC)
with the approximation in Algorithm 2 and compare with 5 other algorithms: passive learner with
Bayesian transductive Naive Bayes model (TPass), least confidence active learner with Bayesian
transductive Naive Bayes model (LC), passive learner with Bayesian non-transductive Naive Bayes
model (NPass), passive learner with logistic regression model (LogPass), and batch active learner

7

with Fisher information matrix and logistic regression model (LogFisher) [5]. To implement the
least confidence algorithm, we sample M label vectors as in Algorithm 2 and use them to estimate
the label distribution for each unlabeled example. The algorithm will then select s examples whose
label is least confident according to these estimates.

We run the algorithms on 7 binary tasks from the 20Newsgroups dataset [13] with batch size s =
10, 20, 30 and report the areas under the accuracy curve (AUC) for the case s = 10 in Table 1. The
results for s = 20, 30 are in the supplementary material. The results are obtained by averaging over
5 different runs of the algorithms, and the AUCs are normalized so that their range is from 0 to
100. From the results, maxGEC obtains the best AUC scores on 4/7 tasks for each batch size and
also the best average AUC scores. LC also performs well and its scores are only slightly lower than
maxGEC. The passive learning algorithms are much worse than the active learning algorithms.

6 Related Work

Among pool-based active learning algorithms, greedy methods are the simplest and most common
[14]. Often, the greedy algorithms try to maximize the uncertainty, e.g. Shannon entropy, of the
example to be queried [12]. For non-adaptive active learning, greedy optimization of the Shannon
entropy guarantees near optimal performance due to the submodularity of the entropy [2]. However,
this has not been shown to extend to adaptive active learning, where each example is labeled as soon
as it is selected, and the labeled examples are exploited in selecting the next example to label.

Although greedy algorithms work well in practice [12, 14], they usually do not have any theoretical
guarantee except for the case where data are noiseless. In noiseless Bayesian setting, an algorithm
called generalized binary search was proven to be near-optimal: its expected number of queries is
within a factor of (ln 1

minh p0[h] + 1) of the optimum, where p0 is the prior [2]. This result was ob-
tained using the adaptive submodularity of the version space reduction. Adaptive submodularity is
an adaptive version of submodularity, a natural diminishing returns property. The adaptive submod-
ularity of version space reduction was also applied to the batch setting to prove the near-optimality of
a batch greedy algorithm that maximizes the average version space reduction for each selected batch
[3]. The maxGEC and batch maxGEC algorithms that we proposed in this paper can be seen as gen-
eralizations of these version space reduction algorithms to the noisy setting. When the hypotheses
are deterministic, our algorithms are equivalent to these version space reduction algorithms.

For the case of noisy data, a noisy version of the generalized binary search was proposed [15]. The
algorithm was proven to be optimal under the neighborly condition, a very limited setting where
“each hypothesis is locally distinguishable from all others” [15]. In another work, Bayesian active
learning was modeled by the Equivalance Class Determination problem and a greedy algorithm
called EC2 was proposed for this problem [16]. Although the cost of EC2 is provably near-optimal,
this formulation requires an explicit noise model and the near-optimality bound is only useful when
the support of the noise model is small. Our formulation, in contrast, is simpler and does not require
an explicit noise model: the noise model is implicit in the probabilistic model and our algorithms
are only limited by computational concerns.

7 Conclusion

We considered a new objective function for Bayesian active learning: the policy Gibbs error. With
this objective, we described the maximum Gibbs error criterion for selecting the examples. The algo-
rithm has near-optimality guarantees in the non-adaptive, adaptive and batch settings. We discussed
algorithms to approximate the Gibbs error criterion for Bayesian CRF and Bayesian transductive
Naive Bayes. We also showed that the criterion is useful for NER with CRF model and for text
classification with Bayesian transductive Naive Bayes model.

Acknowledgments
This work is supported by DSO grant DSOL11102 and the US Air Force Research Laboratory under
agreement number FA2386-12-1-4031.

8

References
[1] Andrew McCallum and Kamal Nigam. Employing EM and Pool-Based Active Learning for Text Classi-

fication. In International Conference on Machine Learning (ICML), pages 350–358, 1998.

[2] Daniel Golovin and Andreas Krause. Adaptive Submodularity: Theory and Applications in Active Learn-
ing and Stochastic Optimization. Journal of Artificial Intelligence Research, 42(1):427–486, 2011.

[3] Yuxin Chen and Andreas Krause. Near-optimal Batch Mode Active Learning and Adaptive Submodular
Optimization. In International Conference on Machine Learning (ICML), pages 160–168, 2013.

[4] Constantino Tsallis and Edgardo Brigatti. Nonextensive statistical mechanics: A brief introduction. Con-
tinuum Mechanics and Thermodynamics, 16(3):223–235, 2004.

[5] Steven CH Hoi, Rong Jin, Jianke Zhu, and Michael R Lyu. Batch Mode Active Learning and Its Appli-
cation to Medical Image Classification. In International Conference on Machine learning (ICML), pages
417–424. ACM, 2006.

[6] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In International Conference on Machine Learning
(ICML), pages 282–289, 2001.

[7] Bassem Sayrafi, Dirk Van Gucht, and Marc Gyssens. The implication problem for measure-based con-
straints. Information Systems, 33(2):221–239, 2008.

[8] G.L. Nemhauser and L.A. Wolsey. Best Algorithms for Approximating the Maximum of a Submodular
Set Function. Mathematics of Operations Research, 3(3):177–188, 1978.

[9] Sunita Sarawagi and William W. Cohen. Semi-Markov Conditional Random Fields for Information Ex-
traction. Advances in Neural Information Processing Systems (NIPS), 17:1185–1192, 2004.

[10] Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and Hai Leong Chieu. Semi-Markov Conditional Random
Field with High-Order Features. In ICML Workshop on Structured Sparsity: Learning and Inference,
2011.

[11] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition. In Proceedings of the 17th Conference on Natural Language
Learning (HLT-NAACL 2003), pages 142–147, 2003.

[12] Burr Settles and Mark Craven. An Analysis of Active Learning Strategies for Sequence Labeling Tasks.
In Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1070–1079. As-
sociation for Computational Linguistics, 2008.

[13] Thorsten Joachims. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categoriza-
tion. Technical report, DTIC Document, 1996.

[14] Burr Settles. Active Learning Literature Survey. Technical Report 1648, University of Wisconsin-
Madison, 2009.

[15] Robert Nowak. Noisy Generalized Binary Search. Advances in Neural Information Processing Systems
(NIPS), 22:1366–1374, 2009.

[16] Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-Optimal Bayesian Active Learning with Noisy
Observations. In Advances in Neural Information Processing Systems (NIPS), pages 766–774, 2010.

9

