
A Constructive Learning Algorithm for
Discriminant Tangent Models

Diego Sona Alessandro Sperduti Antonina Starita
Dipartimento di Informatica, U niversita di Pisa

Corso Italia, 40, 56125 Pisa, Italy
email: {sona.perso.starita}di.unipi.it

Abstract

To reduce the computational complexity of classification systems
using tangent distance, Hastie et al. (HSS) developed an algo
rithm to devise rich models for representing large subsets of the
data which computes automatically the "best" associated tan
gent subspace. Schwenk & Milgram proposed a discriminant mod
ular classification system (Diabolo) based on several autoassociative
multilayer perceptrons which use tangent distance as error recon
struction measure.
We propose a gradient based constructive learning algorithm for
building a tangent subspace model with discriminant capabilities
which combines several of the the advantages of both HSS and
Diabolo: devised tangent models hold discriminant capabilities,
space requirements are improved with respect to HSS since our
algorithm is discriminant and thus it needs fewer prototype models,
dimension of the tangent subspace is determined automatically by
the constructive algorithm, and our algorithm is able to learn new
transformations.

1 Introduction

Tangent distance is a well known technique used for transformation invariant pat
tern recognition. State-of-the-art accuracy can be achieved on an isolated hand
written character task using tangent distance as the classification metric within a
nearest neighbor algorithm [SCD93]. However, this approach has a quite high com
putational complexity, owing to the inefficient search and large number of Euclidean
and tangent distances that need to be calculated. Different researchers have shown
how such time complexity can be reduced [Sim94, SS95] at the cost of increased
space complexity.

A Constructive Learning Algorithm for Discriminant Tangent Models 787

A different approach to the problem was used by Hastie et al. [HSS95) and Schwenk
& Milgram [SM95b, SM95a). Both of them used learning algorithms for reducing
the classification time and space requirements, while trying to preserve the same
accuracy. Hastie et al. [HSS95) developed rich models for representing large subsets
of the prototypes. These models are learned from a training set through a Singular
Value Decomposition based algorithm which minimizes the average 2-sided tangent
distance from a subset of the training images. A nice feature of this algorithm
is that it computes automatically the "best" tangent subspace associated with
the prototypes. Schwenk & Milgram [SM95b) proposed a modular classification
system (Diabolo) based on several autoassociative multilayer perceptrons which use
tangent distance as the error reconstruction measure. This original model was then
improved by adding discriminant capabilities to the system [SM95a).

Comparing Hastie et al. algorithm (HSS) versus the discriminant version of Diabolo,
we observe that: Diabolo seems to require less memory than HSS, however, learning
is faster in HSS; Diabolo is discriminant while HSS is not; the number of hidden
units to be used in Diabolo's autoassociators must be decided heuristically through
a trial and error procedure, while the dimension of the tangent subspaces in HSS
can be controlled more easily; Diabolo uses predefined transformations, while HSS
is able to learn new transformations (like style transformations).

In this paper, we introduce the tangent distance neuron (TO-neuron), which imple
ments the I-sided version of the tangent distance, and we devise a gradient based
constructive learning algorithm for building a tangent subspace model with dis
criminant capabilities. In this way, we are able to combine the advantages of both
HSS and Diabolo: the model holds discriminant capabilities, learning is just a bit
slower than HSS, space requirements are improved with respect to HSS since the
TO-neuron is discriminant and thus it needs fewer prototype models, the dimension
of the tangent subspace is determined automatically by the constructive algorithm,
and TO-neuron is able to learn new transformations.

2 Tangent Distance

In several pattern recognition problems Euclidean distance fails to give a satis
factory solution since it is unable to account for invariant transformations of the
patterns. Simard et al. [SCD93) suggested dealing with this problem by generating
a parameterized 7-dimensional manifold for each image, where each parameter ac
counts for one such invariance. The underlying idea consists in approximating the
considered transformations locally through a linear model.

For the sake of exposition, consider rotation. Given a digitalized image Xi of a
pattern i, the rotation operation can be approximated by Xi(O) = Xi + Tx,O,
where 0 is the rotation angle, and T x, is the tangent vector to the rotation curve
generated by the rotation operator for Xi. The tangent vector T x, can easily be
computed by finite difference. Now, instead of measuring the distance between two
images as D(Xi, X j) = IIX i-X j II for any norm 11·11. Simard et al. proposed using
the tangent distance DT(Xi,Xj) = min9.,9, IIXi(Oi) - Xj(Oj)lI.

If k types of transformations are considered, there will be k different tangent vectors
per pattern. If II . II is the Euclidean norm, computing the tangent distance is a
simple least-squares problem. A solution for this problem l can be found in Simard
et al. [SCD93], where the authors used DT to drive a I-NN classification rule.

1 A special case of tangent distance, i.e., the one sided tangent distance
D~-·;ded(x" X J) = mine; IIX,((J,) - Xjll, can be computed more efficiently [SS95].

788 D. Sona, A. Sperduti and A. Starita

Figure 1: Geometric interpretation of equation 1. Note that net = (D~-8ided):l.

Unfortunately, 1-NN is expensive. To reduce the complexity ofthe above approach,
Hastie et al. [HSS95] proposed an algorithm for the generation of rich models
representing large subsets of patterns. This algorithm computes for each class a
prototype (the centroid), and an associated subspace (described by the tangent
vectors), such that the total tangent distance of the centroid with respect to the
prototypes in the training set is minimised. Note that the associated subspace is
not predefined as in the case of standard tangent distance, but is computed on the
basis of the training set .

3 Tangent Distance Neuron

In this section we define the Tangent ~istance neuron (TO-neuron), which is the
computational model studied in this paper. A TO-neuron is characterized by a set
of n + 1 vectors, of the same dimension as the input vectors (in our case, images) .
One of these vectors, W is used as reference vector (centroid), while the remaining
vectors, Ti (i = 1, ••• , n), are used as tangent vectors. Moreover, the set of tangent
vectors constitutes an ortho-normal basis.

Given an input vector I the input net of the TO-neuron is computed as the square
of the I-sided tangent distance between I and the tangent model {W, T 1 , ••• , Tn}
(see Figure 1)

n n

where we have used the fact that the tangent vectors constitute an ortho-normal
basis. For the sake of notation, d denotes the difference between the input pattern
and the centroid, and the projection of d over the i-th tangent vector is denoted by
"'fi. Note that, by definition, net is non-negative.

The output 0 of the TO-neuron is then computed by transforming the net through
a nonlinear monotone function f. In our experiments, we have used the following
function

1
0= f(o.,net) = ----

1 + 0. net
(2)

where 0. controls the steepness of the function. Note that 0 is positive since net is
always positive and within the range (0, 1] .

A Constructive Learning Algorithm for Discriminant Tangent Models 789

4 Learning

The TD-neuron can be trained to discriminate between patterns belonging to two
different classes through a gradient descent technique. Thus, given a training set
{(I"t,), ... ,(IN,tN)} , where ti E {O,1} is the i-th desired output, and N is
the total number of patterns in the training set, we can define the error function as

N

E = = 2:)tk - Okr~
2 k=l

(3)

where Ok is the output of the TD-neuron for the k-th input pattern.

Using equations (1-2), it is trivial to compute the changes for the tangent vectors,
the centroid and 0.:

(4)

(5)

..do. :=: -'1101 (6E) = - t netk 'I101(tk - Ok) o~
60. k=l

(6)

where '11 and '1101 are learning parameters.

The learning algorithm initializes the centroid W to the average of the patterns with
target 1, i.e., W = /., Lf~, Ik , where N, is the number of patterns with target
equal to 1, and the tangent vectors to random vectors with small modulus. Then
0., t he centroid Wand the tangent vectors Ti are changed according to equations
(4-6). Moreover , since the tangent vectors must constitute an ortho-normal basis,
after each epoch of training the vectors Ti are ortho-normalized.

5 The Constructive Algorithm

Before training the TD-neuron using equations (4-6), we have to set the tangent
subspace dimension. The same problem is present in HSS and Diabolo (i.e., number
of hidden units). To solve this problem we have developed a constructive algorithm
which adds tangent vectors one by one according to the computational needs.

The key idea is based on the observation that a typical run of the learning algorithm
described in Section 4 leads to the sequential convergence of the vectors according to
their relative importance. This means that the tangent vectors all remain random
vectors while the centroid converges first.

Then one of the tangent vectors converges to the most relevant transformation
(while the remaining tangent vectors are still immature), and so on till all the
tangent vectors converge, one by one, to less and less relevant transformations .

This behavior suggests starting the training using only the centroid (i .e., without
tangent vectors) and allow it to converge. Then, as in other constructive algorithms,
the centroid is frozen and one random tangent vector T 1 is added. Learning is
resumed till changes in T 1 become irrelevant . During learning, however, T, is
normalized after each epoch. At convergence, T 1 is frozen, a new random tangent
vector T 2 is added, and learning is resumed. New tangent vectors are iteratively
added till changes in the classification accuracy becomes irrelevant.

790 D. Sona, A. Sperduti and A. Starita

HSS TD-neuron
Tang. % Cor % Err % Cor % Rej % Err

0 - - 73. 78 7.24 18.98
1 78 . 74 21.26 72 . 06 10 .• 8 17.46
2 79.10 20.90 77 .99 8 .05 13.96
3 79 .94 20.06 81.14 7.17 11.69
4 81.47 18.53 82 .68 6 .8. 10 .48
5 76 .87 23.13 84 .25 5.63 10.12
6 71 .29 28. 71 85. 21 5 .14 9 .65
7 - - 86.16 4.76 9 .08
8 86.37 4 .89 8 . 74

Table 1; The results obtained by the HSS algorithm and the TO-neuron.

6 Results

We have tested our constructive algorithm versus the HSS algorithm (which uses
the 2-sided tangent distance) on 10587 binary digits from the NIST-3 dataset . The
binary I28xI28 digits were transformed into a 64-grey level I6xI6 format by a
simple local counting procedure. No other pre-processing transformation
was performed. The training set consisted of 3000 randomly chosen digits, while
the remaining digits where used in the test set. A single tangent model for each
class of digit was computed using both algorithms. The classification of the test
digits was performed using the label of the closest model for HSS and the output
of the TO-neurons for our system. The TO-neurons used a rejection criterion with
parameters adapted during training.

In Table 1 we have reported the performances on the test set of both HSS and our
system. Oifferent numbers of tangent vectors were tested for both of them. From the
results it is clear that the models generated by HSS reach a peak in performance with
4 tangent vectors and then a sharp degradation of the generalization is observed
by adding more tangent vectors. On the contrary, the TO-neurons are able to
steadly increase the performance with an increasing number of tangent vectors.
The improvement in the performance, however, seems to saturate when using many
tangent vectors. Table 2 presents the confusion matrix obtained by the TO-neurons
with 8 tangent vectors.

For comparison, we display some of the tangent models computed by HSS and
by our algorithm in Figure 2. Note how tangent models developed by the HSS
algorithm tend to be more blurred than the ones developed by our algorithm. This
is due to the lake of discriminant capabilities by the HSS algorithm and it is the
main cause of the degradation in performance observed when using more than 4
tangent vectors.

It must be pointed out that, for a fixed number of tangent vectors, the HSS algo
rithm is faster than ours, because it needs only a fraction of the training examples
(only one class). However, our algorithm is remarkably more efficient when a family
of tangent models with an increasing number of tangent vectors must be generated2 •

Moreover, since a TO-neuron uses the one sided tangent distance, it is faster in com
puting the output.

7 Conclusion

We introduced the tangent distance neuron (TO-neuron), which implements the
I-sided version of the tangent distance and gave a constructive learning algorithm
for building a tangent subspace with discriminant capabilities. As stated in the in-

:>The tangent model computed by HSS depends on the number of ta.ngent vectors.

A Constructive Learning Algorithm/or Discriminant Tangent Models 791

Figure 2: The tangent models obtained for digits '1' and '3' by the HSS algorithm
(row 1 and 3, respectively) and our TD-neuron (row 2 and 4, respectively). The
centroids are shown in the first column .

troduction , there are many advantages of using the proposed computational model
versus other techniques like HSS and Diabolo. Specifically, we believe that the
proposed approach is particularly useful in those applications where it is very im
portant to have a classification system which is both discriminant and semantically
transparent, in the sense that it is very easy to understand how it works. One
among these applications is the classification of ancient book scripts. In fact, the
description, the comparison , and the classification of forms are the main tasks of
paleographers. Until now, however, these tasks have been generally performed with
out the aid of a universally accepted and quantitatively based method or technique.
Consequently, very often it is impossible to reach a definitive date attribution of a
document to within 50 years. In this field, it is very important to have a system
which is both discriminant and explanatory, so that paleographers can learn from it
which are the relevant features of the script of a given epoch. These requirements
rule out systems like Diabolo, which is not easily interpretable, and also tangent
models developed by HSS, which are not discriminant. In Figure 3 we have reported
some preliminary results we obtained within this field.

Perhaps most importantly, our work suggests a number of research avenues. We
used just a single TD-neuron; presumably having several neurons arranged as an
adaptive pre-processing layer within a standard feed-forward neural network can
yield a remarkable increase in the transformation invariant features of the network.

00 08 OQ ReJ II % Cor % Rej % Err

Co 661 { 2 5 27 8 2 1 9 0 {2 86 .86 5 .52 1 .62
C t 4 M2 0 1 1 1 1 11 8 0 9 95.90 1.03 3.08
C~ { 1 650 2 13 2 10 6 9 0 69 M.86 9.01 6.14
C.,. 1 3 22 656 0 26 1 11 18 { 28 85.19 3.6{ 11.17
C 0 0 2 0 633 3 4 5 1 48 32 86 .2{ {.36 9 .{0

. Co. 1 1 3 39 2 535 7 1 7 3 H 83 .20 6.M 9 .95
Cil 0 4 1 2 6 11 680 0 4 0 33 91. 77 4 .45 3.18
C,7 1 1 3 0 4 3 0 127 12 24 27 90.65 3 .37 5 .99
CR 1 4 1 18 14 12 0 7 607 11 62 81.70 8 .34 9.96
C',q 0 0 0 12 43 1 0 70 36 562 25 15.03 3.34 21.63

Total Correct : 86.37% Re.Jected 4 .89% Errors 8 .74%

Table 2: The confusion matrix for the TD-neurons with 8 tangent vectors.

