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Abstract

Given the ubiquity of deep neural networks, it is important that these models do not
reveal information about sensitive data that they have been trained on. In model
inversion attacks, a malicious user attempts to recover the private dataset used to
train a supervised neural network. A successful model inversion attack should
generate realistic and diverse samples that accurately describe each of the classes
in the private dataset. In this work, we provide a probabilistic interpretation of
model inversion attacks, and formulate a variational objective that accounts for
both diversity and accuracy. In order to optimize this variational objective, we
choose a variational family defined in the code space of a deep generative model,
trained on a public auxiliary dataset that shares some structural similarity with
the target dataset. Empirically, our method substantially improves performance in
terms of target attack accuracy, sample realism, and diversity on datasets of faces
and chest X-ray images.

1 Introduction

Thanks to recent advances, deep neural networks are now widely used in applications including facial
recognition [Parkhi et al., 2015], intelligent automated assistants, and personalized medicine [Consor-
tium, 2009; Sconce et al., 2005]. Powerful deep neural networks are trained on large datasets that
could contain sensitive information about individuals. Publishers release only the trained models (e.g.,
on TensorFlow Hub [TensorFlow]), but not the original dataset to protect the privacy of individuals
whose information is in the training set. Regrettably, the published model can leak information about
the original training set [Geiping et al., 2020; Nasr et al., 2019; Shokri et al., 2017]. Attacks that
exploit such properties of machine learning models are privacy attacks [Rigaki and Garcia, 2020].
Other real-world scenarios where an attacker can access models trained on private datasets include
interaction with APIs (e.g., Amazon Rekognition [AWS]), or in the growing paradigm of federated
learning [Bonawitz et al., 2019; Yang et al., 2019a], where a malicious insider can try to steal data
from other data centers [Hitaj et al., 2017]. Kaissis et al. [2020] provides an overview of how these
privacy concerns are hindering the widespread application of deep learning in the medical domain.

This paper focuses on the model inversion (MI) attack, a type of privacy attack that tries to recover the
training set given access only to a trained classifier [Chen et al., 2020; Fredrikson et al., 2015, 2014;
Hidano et al., 2017; Khosravy et al., 2020; Yang et al., 2019b; Zhang et al., 2020]. The classifier
under attack is referred to as the “target classifier” (see Figure 1). An important relevant application
concerns identity recognition from face images, since facial recognition is a common approach to
biometric identification [Galbally et al., 2014; Rathgeb and Uhl, 2011]. Once an attacker successfully
reconstructs images of the faces of individuals in the private training set, they can use the stolen
identity to break into otherwise secure systems.

Early studies of MI attacks focused on attacking classifiers whose inputs are tabular data [Fredrikson
et al., 2015, 2014; Hidano et al., 2017] by directly performing inference in the input space. However,
the same methods fail when the target classifier processes high-dimensional inputs, e.g., in the above
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Figure 1: In model inversion attacks, the attacker tries to recover the original dataset used to train
a classifier with access to only the trained classifier. In the two figures on the right, each row
corresponds to a private identity – an individual whose images are not available to the attacker. The
first five identities (not cherry-picked) were visualized. On the left are real data samples, and on the
right are generated samples from our proposed method.

example of a face recognizer. Recent methods cope with this high-dimensional search space by
performing the attack in the latent space of a neural network generator [Khosravy et al., 2020; Yang
et al., 2019b; Zhang et al., 2020]. Introducing a generator works well in practice, but this success is
not theoretically understood. In this paper, we frame MI attacks as a variational inference (VI) [Blei
et al., 2017; Jordan et al., 1999; Kingma and Welling, 2013] problem, and derive a practical objective.
This view allows us to justify existing approaches based on a deep generative model, and identify
missing ingredients in them. Empirically, we find that our proposed objective leads to significant
improvements: more accurate and diverse attack images, which are quantified using standard sample
quality metrics (i.e., FID [Heusel et al., 2017], precision, and recall [Kynkäänniemi et al., 2019;
Naeem et al., 2020]).

In summary, our contributions and findings are:

• We view the model inversion (MI) attack problem as a variational inference (VI) problem.
This view allows us to derive a practical objective based on a statistical divergence, and
provides a unified framework for analyzing existing methods.

• We provide an implementation of our framework using a set of deep normalizing flows [Dinh
et al., 2014, 2016; Kingma and Dhariwal, 2018] in the extended latent space of a Style-
GAN [Karras et al., 2020]. This implementation can leverage the hierarchy of learned
representations, and perform targeted attacks while preserving diversity.

• Empirically, on the CelebA [Liu et al., 2015], and ChestX-ray [Wang et al., 2017] datasets,
our method results in higher attack accuracy, and more diverse generation compared to
existing methods. We provide thorough comparative experiments to understand which
components contribute to improved target accuracy, sample realism, and sample diversity,
and detail the benefits of the VI perspective.

Code can be found at https://github.com/wangkua1/vmi.

2 Problem Setup: Model Inversion Attack

In the problem of model inversion (MI) attack, the attacker has access to a “target classifier”:

pTAR(y|x) : Rd → ∆C−1

where ∆C−1 to denote the (C − 1)-simplex, representing the C-dimensional probability where C is
the number of classes. This target classifier is trained on the private target dataset, DTAR = {xi, yi}NTAR

i=1

where x ∈ Rd and y ∈ {1, 2, ..., C}. We use pTAR(y|x) to denote the given target classifier, which
is an approximation of the true conditional probability pTAR(y|x) of the underlying data generating
distribution.

Goal. Given a target classifier pTAR(y|x), we wish to approximate the class conditional distribution
pTAR(x|y) without having access to the private training set DTAR.
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A good model inversion attack should approximate the Bayes posterior pTAR(x|y) ∝ pTAR(y|x)pTAR(x)
well, and allow the attacker to generate realistic, accurate, and diverse samples. Notice, our goal
shifts slightly from recovering the exact instances in the training set to recovering the data generating
distribution of the training data. Let’s consider a scenario where the attacker intends to fake a
victim’s identity. A good security system might test the realism of a sequence of inputs [Holland
and Komogortsev, 2013]. More generally, faking someone’s identity requires passing a two-sample
test [Holland and Komogortsev, 2013; Lehmann and Romano, 2006], which means the ability to
generate samples from pTAR(x|y) is necessary. Another scenario can be an attacker trying to steal
private/proprietary information. For example, a malicious insider in a federated learning setting can
try to steal information from another datacenter by accessing the shared model [Hitaj et al., 2017]. In
such a scenario, a good pTAR(x|y) model can reveal not only the distinguishing features of the data,
but also its variations.

3 Related Work

In this section, we first discuss related model inversion attack studies, and then discuss applications
of inverting a classifier outside of the privacy attack setting. Lastly, since our attack method relies
on using a pretrained generator, we discuss existing studies that used a pretrained generator for
improving other applications.

Model inversion attacks. MI attacks are one type of privacy attack where the attacker tries to
reconstruct the training examples given access only to a target classifier. Other privacy attacks include
membership attacks, attribute inference, and model extraction attacks (see Rigaki and Garcia [2020]
for a general discussion). Fredrikson et al. [Fredrikson et al., 2015, 2014] were the first to study
the MI attack and demonstrated successful attacks on low-capacity models (e.g., logistic regression,
and a shallow MLP network) when partial input information was available to the attacker. The
setting where partial input information was not available was studied by Hidano et al. [2017]. They
termed performing gradient ascent w.r.t. the target classifier in the input space a General Model
Inversion attack. Though effective on tabular data, this approach failed on deep image classifiers. It is
well-known that directly performing gradient ascent in the image space results in imperceptible and
unnatural changes [Szegedy et al., 2013].

To handle high-dimensional observations such as images, MI attacks based on deep generators were
proposed [Chen et al., 2020; Yang et al., 2019b; Zhang et al., 2020]. By training a deep generator
on an auxiliary dataset, these methods effectively reduce the search space to only the manifold of
relevant images. For example, if the target classifier is a facial recognition system, then an auxiliary
dataset of generic faces can be easily obtained. Zhang et al. [2020] pretrain a Generative Adversarial
Network (GAN) [Goodfellow et al., 2014] on the auxiliary dataset and performed gradient-based
attack in the latent space of the generator. Yang et al. [2019b] trained a generator that inverts the
prediction of the target classifier, using the architecture of an autoencoder.

Other applications of classifier inversion. Inverting the predictions and activations of a classifier
has been studied for applications such as model explanation, and model distillation. Motivated by
using saliency maps to explain the decision of a classifier [Simonyan et al., 2013], Mahendran and
Vedaldi [2015] proposed to maximize the activation of a target neuron in a classifier for synthesizing
images that best explain that neuron. Their method is based on gradient ascent in the pixel-space.
The same idea was recently extended to enable knowledge distillation in a setting where the original
dataset was too large to be transferred [Yin et al., 2020]. Methods above have the advantage of not
requiring the original dataset, but the generated images still appear unnatural. One effective way
to improve the realism of the generated images is to optimize in the latent code space of a deep
generator [Nguyen et al., 2015, 2017].

Pretrained generators. Pretrained generators from GANs have other applications. Image inpaint-
ing/restoration was one of the early successful applications of using a pretrained GAN as image
prior. Yeh et al. [2017] optimized the latent code of GANs to minimize the reconstruction error of a
partially occluded image for realistic inpainting. The same method formed the basis of AnoGAN, a
popular technique for anomaly detection in medical images [Schlegl et al., 2017]. A combination
of reconstruction error and discriminator loss was used as the anomaly score. A potential future
direction is to apply our proposed method to these adjacent applications.
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4 Model Inversion Attack as Variational Inference

In this section, we derive our Variational Model Inversion (VMI) learning objective. For each class
label y, we wish to approximate the true target posterior with a variational distribution q(x) ∈ Qx,
where Qx is the variational family. This can be achieved by the optimizing the following objectives

q∗(x) = argmin
q∈Qx

{
DKL(q(x)||pTAR(x|y))

}
= argmin

q∈Qx

{
Eq(x)[− log pTAR(y|x)] +DKL(q(x)||pTAR(x)) + log pTAR(y)

}
= argmin

q∈Qx

{
Eq(x)[− log pTAR(y|x)] +DKL(q(x)||pTAR(x))

}
. (1)

where in Equation 1 we have used the fact that log pTAR(y) is independent of q(x), and thus can be
dropped in the optimization.

Auxiliary Image Prior. In order to minimize Eq. (1), we need to compute DKL(q(x)||pTAR(x)),
which requires evaluating the true image prior pTAR(x), that is not accessible. Similar to recent works
on MI attacks [Khosravy et al., 2020; Yang et al., 2019b; Zhang et al., 2020], we assume that a
public auxiliary dataset DAUX, which shares structural similarity with the target dataset, is available
to learn an auxiliary image prior pAUX(x). This auxiliary image prior pAUX(x) is learned using a
generative adversarial network (GAN) pAUX(x) = EpAUX(z)[pG(x|z)], where pAUX(z) = N (0, I) is
the GAN prior, and pG(x|z) is the GAN generator that is parameterized by a deep neural network
G(z), and a Gaussian observation noise with small standard deviation σ: pG(x|z) = N

(
G(z), σ2I

)
,

or equivalently
x = G(z) + σϵ, ϵ ∼ N (0, I).

The learned generator pG(x|z) defines a low dimensional manifold in the observation space x, when
z is chosen to have fewer dimensions than x. We now make the following assumption about the
structural similarity of pAUX(x) and pTAR(x).
Assumption 1 (Common Generator). We assume pTAR(x) is concentrated close to the low dimensional
manifold of pG(x|z), learned from the auxiliary dataset DAUX. In other words, we assume there exists
a target prior pTAR(z), possibly different from pAUX(z), such that pTAR(x) ≈ EpTAR(z)[pG(x|z)]. We
refer to pG(x|z) as the “common generator”.

The name “common generator” is inspired by recent progress in theoretical analyses of few-shot
and transfer learning, where assumptions about an underlying shared representation have been used
to provide error bounds. In these works, this shared representation is referred to as the “common
representation” [Du et al., 2020; Tripuraneni et al., 2020]. Assumption 1 usually holds in the context
of model inversion attacks. For example, pAUX(x) could be the distribution of all human faces, while
pTAR(x) could be the distribution of the celebrity faces; or pAUX(x) could be the distribution of natural
images, while pTAR(x) could be the distribution of different breeds of dogs. In these examples,
both pAUX(x) and pTAR(x) approximately live close to the same low dimensional manifold, but the
distribution on this shared manifold could be different, i.e., pTAR(z) ̸= pAUX(z).

Variational Family. We further consider our variational family Qx to be all distributions that lie on
this manifold by assuming that q(x) is of the form q(x) = Eq(z)[pG(x|z)], q(z) ∈ Qz, where Qz is
a variational family in the code space. In the next section, we further restrict Qz to be either Gaussian
distributions or normalizing flows.
Proposition 1. We have DKL

(
q(z)||pTAR(z)

)
≥ DKL

(
Eq(z)[pG(x|z)]||EpTAR(z)[pG(x|z)]

)
.

See Appendix A for the proof. Using Assumption 1, we can approximate the objective of Equation 1
with
q∗(z) = argmin

q∈Qz

{
Ez∼q(z),ϵ∼N (0,I)[− log pTAR(y|G(z) + σϵ)] +DKL

(
Eq(z)[pG(x|z)]||EpTAR(z)[pG(x|z)]

)}
,

(2)

where this objective is now defined in terms of q(z) ∈ Qz in the latent space of the GAN. Now using
the Proposition 1, we can obtain the following upper bound on the objective of Equation 2 (assuming
σ = 0)

q∗(z) = argmin
q∈Qz

{
Ez∼q(z)[− log pTAR(y|G(z))] +DKL(q(z)||pTAR(z))

}
. (3)
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Power Posteriors. We now consider the optimization of Equation 3. Since we do not have access
to pTAR(z), we propose to replace it with pAUX(z), noting that, as argued above, pAUX(z) may not
accurately represent pTAR(z). We also propose to replace the unknown likelihood pTAR(y|G(z)) with
the pTAR(y|G(z)) defined by the target classifier, noting that this likelihood could be miscalibrated.
Miscalibration is a known problem in neural network classifiers [Guo et al., 2017]; namely, the
classifier predictions can be over- or under-confident. In order to account for these issues, instead
of the standard Bayes posterior qBAYES(z) ∝ pAUX(z)pTAR(y|G(z)) as the solution of Equation 3, we
consider the family of “power posterior” 1 [Bissiri et al., 2016; Holmes and Walker, 2017; Knoblauch
et al., 2019; Miller and Dunson, 2018], which raise the likelihood function to a power 1

γ

q∗γ(z) ∝ pAUX(z)p
1
γ

TAR(y|G(z)),

and can be characterized as the solution of the following optimization problem:

q∗γ(z) = argmin
q∈Qz

Lγ
VMI(q), (4)

Lγ
VMI(q) := Ez∼q(z)[− log pTAR(y|G(z))] + γDKL(q(z)||pAUX(z)).

See Appendix A for the proof. If the prior pAUX(z) is not reliable, by decreasing γ, we can reduce the
importance of the prior. Similarly, by adjusting γ, we can reduce or increase the importance of over-
or under-confident likelihood predictions pTAR(y|G(z)).

Accuracy vs. Diversity Tradeoff. In the context of model inversion attack, the Bayes posterior
qBAYES(z) can only achieve a particular tradeoff between the accuracy and diversity of the generated
samples. However, the family of power posteriors enables us to achieve an arbitrary desired tradeoff
between accuracy and diversity by tuning γ. If γ = 0, then q∗γ=0(z) = δ(z − z∗), and the model
essentially ignores the image prior and diversity, and finds a single point estimate z∗ on the manifold
which maximizes the accuracy pTAR(y|G(z)). As we increase γ, the the model achieves larger
diversity at the cost of smaller average accuracy. When γ = 1, we recover the Bayes posterior
q∗γ=1(z) ∝ pAUX(z)pTAR(y|G(z)). In the limit of γ → ∞, we have q∗∞(z) = pAUX(z). In this
case, the model ignores the classifier and accuracy, and sample unconditionally from the auxiliary
distribution (maximum diversity). We empirically study the effect of γ in Section 5.

4.1 The Common Generator
In the previous section, we derived a practical MI objective from the perspective of variational
inference. Similar to previous works [Chen et al., 2020; Zhang et al., 2020] VMI requires a common
generator that is trained on a relevant auxiliary dataset. In this subsection, we first provide a brief
description of the most common choice, DCGAN. Then, we introduce StyleGAN, which has an
architecture that allows for fine-grained control. Finally, we describe how to adapt our VMI objective
to leverage this architecture by using a layer-wise approximate distribution.

For the common generator G we use a GAN due to their ability to synthesize high quality sam-
ples [Abdal et al., 2019; Bau et al., 2018; Karras et al., 2019; Shen et al., 2020]. The generator is
trained on the auxiliary dataset. A common choice is the DCGAN architecture [Radford et al., 2015].
Though optimizing in the latent space results in more realistic samples, this search space is also more
restrictive. Early investigation showed that optimizing at some intermediate layers of a pretrained
generator was better than either optimizing in the code space, or the pixel space. This motivated the
use of a generator architecture where activations of intermediate layers can be manipulated.

StyleGAN. A framework that naturally allows for optimization in the intermediate layers is the
StyleGAN [Karras et al., 2019]. It consists of a mapping network f : z 7→ w, and a synthesis network
S. The synthesis network takes as input one w at each layer, S : {wl}Ll=1 7→ x, where L is the
number of layers in S. During training of a StyleGAN, the output from the mapping network is
copied L times, {w}Ll=1 = COPY(w, L) before being fed to the synthesis network. This input space
of the synthesis network S has been referred to as the “extended w space” [Abdal et al., 2019]. The
full generator is GSTYLE(z) = S

(
COPY

(
f(z), L

))
.

1These posterior updates are sometimes referred to as “power likelihood” or “power prior” [Bissiri et al.,
2016].
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Layer 0,1,2 Layer 3,4,5,6
hairstyle, bangs, face contour eyes, nose, mouth, hair color

Layer 7,8,9
no effect on identity

Figure 2: Visualizing the factors of variations in each layer of the StyleGAN [Karras et al., 2019]
using style mixing. Each image is generated by mixing the the corresponding image in the topmost
row, and the image in the leftmost column. The topmost row image provides the features for the
indicated set of layers, and the leftmost column image provides features for the remaining layers.
We can see that in general, the earlier features contribute more to the facial features, while the later
features contribute more to the low-level images statistics such as lighting and general shading. Given
this learned layer-wise disentanglement, our VMI attack can adaptively discover layers that contribute
the most to the face identity (layers 1, 2, 4, 5, 6), and only manipulates the corresponding features
(see Figure 7). This is not facilitated by the generator of a DCGAN, as found in existing MI attack
methods [Chen et al., 2020; Zhang et al., 2020].

Target 
Classifier

Attacking 
identity 0

f

Face Shape
Nose Shape

Head Orientation
Head Location

f

For all layers

S : StyleGAN Synthesis Net
: StyleGAN Mapping Net
: Latent Prior

f S

Figure 3: Utilizing the StyleGAN architecture, our
VMI attack tends to focus on layers whose repre-
sentation are relevant for the attack, such as the
layer for “face shape”.

StyleGAN is known for its surprising ability to
perform “style mixing”. Namely, the synthesis
network can generate a “mixed” image, when be-
ing fed a mixture of two w’s in the extended w
space, i.e., S([{w1}L0

l=1; {w2}Ll=L0+1]), where
[·; ·] denotes concatenation, and L0 is some in-
termediate layer. Figure 2 visualizes the effect
of manipulating different layers of the synthe-
sis network. Performing an attack in this ex-
tended w space allows us to achieve the desired
effect of optimizing the intermediate layers. Be-
cause of the lack of a explicit prior for w, we
instead optimize the extended z space (Figure 3).
Suppose q(z1, . . . , zL) is the joint density over
z1, . . . , zL, and ql(zl) is the marginal density over zl. We consider the following objective for the
VMI with the StyleGAN generator:

Lγ
S-VMI(q) := Eq(z1,...,zL)

[
− log pTAR

(
y
∣∣∣S({f(zl)}Ll=1

))]
+

γ

L

L∑
l=1

DKL(ql(zl)||pAUX(zl)). (5)

4.2 Code Space Variational Family Qz

In the VMI formulations (Equation 4 and 5), the approximate distribution q(z) can be seen as a
generator, or “miner” network [Wang et al., 2020] for the latent space of the common generator.
It must belong to a distribution family Qz, whose distribution can be sampled from, and can be
evaluated in order to optimize the KL-divergence. In this work, we experiment with a powerful
class of tractable generative models: deep flow models. When optimizing Lγ

S-VMI(q) (Equation 5),
we use L such models, one for each layer in the synthesis network. In our experiments, we used an
architecture similar to that of Glow [Kingma and Dhariwal, 2018], where we treated the latent vector
as 1x1 images. We removed the original squeezing layers that reduced the image size to account for
this change. We also experimented with using a Gaussian variational family for q(z).

4.3 Relationships with Existing Methods
VMI provides a unified framework that encompasses existing attack methods. Through the lens of
VMI, we can obtain insights on the conceptual differences between the existing methods and their
pros and cons. “General MI” attack [Hidano et al., 2017] performs the following optimization:

x∗ = argmax
x

log pTAR(y|x). (6)
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Figure 4: Visualization of real samples for all 3 tasks: MNIST, CelebA, and ChestX-ray. For the
target datasets, each row corresponds to one class/identity. Best viewed zoomed in.

Note that this objective can be viewed as special case of VMI, where the code space is the same as the
data space, and we have γ = 0 in the objective: Lγ=0

VMI (q). In this case, as discussed in the previous
section, the q(x) distribution collapses to a point estimate at which pTAR(y|x) is maximized. As we
will see in the experiment section, since the optimization is in the data space, the solution does not
live close the manifold of images, and thus generally does not structurally looks like natural images.

“Generative MI” attack [Zhang et al., 2020] also uses a generator trained on an “auxiliary” dataset.
The attack optimizes the following objective:

z∗ = argmin
z

{
− λ log pTAR(y|(G(z))− log σ

(
D(G(z))

)}
(7)

where G,D denotes the generator and discriminator respectively, and σ(·) is the sigmoid function.
Note that this objective can be viewed as special case of VMI, with γ = 1

λ , and with the prior
p(z) ∝ σ

(
D(G(z)

)
, and a point estimate for z, instead of optimizing over distributions q(z). As a

result of this point-wise optimization, the Generative MI attack requires re-running the optimization
procedure for every new samples. In contrast, VMI learns a distribution q(z) using expressive
normalizing flows, which allows us to draw multiple attack samples after a single optimization
procedure. Recently, Chen et al. [2020] proposed extending Generative MI by considering a Gaussian
variational family in the latent space of the pretrained generator in Equation 7. However, we note this
method still theoretically results in collapsing the Gaussian variational distributions to a point estimate.
VMI prevents this by penalizing the entropy of the variational distribution with the KL-divergence
term. From the implementation perspective, Chen et al. [2020] uses DCGAN while we use StyleGAN
which helps us to achieve better disentanglement. Furthermore, we use a more expressive variational
family such as normalizing flows.

5 Experiments

In this section, we demonstrate the effectiveness of the proposed VMI attack method on three separate
tasks. We will refer to each task by their target dataset: MNIST [LeCun et al., 2010], CelebA [Liu
et al., 2015], and ChestX-ray (CXR) [Wang et al., 2017]. Then, we showcase the robustness of
the VMI attack to different target classifiers on CelebA. More experimental details can be found in
Appendix B.

Data. For the MNIST task, we used the ‘letters’ split (i.e., handwritten English alphabets) of the
EMNIST [Cohen et al., 2017] dataset as the auxiliary dataset. For CelebA, we used the 1000 most
frequent identities as the target dataset, and the rest as the auxiliary dataset. For ChestX-ray, we
used the 8 diseases outlined by Wang et al. [2017] as the target dataset, and randomly selected
50,000 images from the remaining as the auxiliary dataset. Real samples from these six datasets are
visualized in Figure 4.
Target classifiers. The target classifiers used in all tasks were ResNets trained using SGD with
momentum. Optimization hyperparameters were selected to maximize accuracy on a validation set of
the private data.

Evaluation metrics. An ideal evaluation protocol should measure different aspects of the attack
samples such as target accuracy, sample realism, and sample diversity.

Target Accuracy: To automate the process of judging the accuracy of an attack, we use an “evaluation”
classifier. This metrics measures how well the generated samples resemble the target class/identity.
Given a target identity i, an attack produces a set of samples {x′

n}Nn=1. Each sample is assigned a
predicted label by the evaluation classifier, and then the top-1 accuracy is computed.
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Accuracy↑ FID ↓
MNIST CelebA CXR MNIST CelebA CXR

General MI [Hidano et al., 2017] 0 ± 0.00 0± 0.00 0.23± 0.29 376.7 (57.4) 421.21 (31.3) 499.54 (96.3)

Generative MI [Zhang et al., 2020] 0.92 ± 0.02 0.07± 0.02 0.28± 0.25 88.91 (57.4) 43.21 (31.3) 142.66 (96.3)

VMI w/ DCGAN 0.95± 0.02 0.37± 0.07 0.42± 0.28 77.73 (57.4) 40.89 (31.3) 265.14 (96.3)

VMI w/ StyleGAN - 0.55± 0.06 0.69± 0.23 - 17.41 (19.2) 123.17 (57.0)

Table 1: MI attack comparison across tasks. Both VMI methods here used the Flow model for q(z).
Best values are in bold, and values within the 95% confidence interval (±) of the best are underlined.
The numbers in the braces in the FID columns are FIDs of the pre-trained generators. Our VMI attack
results in better accuracy and FID compared to baselines on all three tasks.

If a good evaluation classifier only generalized to realistic inputs, then this metric would also penalize
unrealistic attack samples. To some extent, this was the case in our experiments as evidenced by
the extremely low accuracy assigned to the General MI attack baseline in Table 1. In Figure 5, the
General MI attack samples were clearly unrealistic. To ensure a fair and informative evaluation, the
evaluation classifier should be as accurate and generalizable as possible (details in Appendix B.3).

Sample Realism: We used FID [Heusel et al., 2017] to directly measure the overall sample quality.
To compute FID, we aggregated attack samples across classes and compared them to aggregated real
images. Following standard practice, the feature extractor used for computing FID was the pretrained
Inception network [Szegedy et al., 2015].

Sample Diversity: Though FID captures realism and overall diversity, it is known to neglect properties
such as intra-class diversity, which is an important feature of a good MI attack. To overcome this
limitation, we computed the improved precision & recall [Kynkäänniemi et al., 2019], coverage
& density [Naeem et al., 2020] on a per class basis, capturing the intra-class diversity of the gen-
erated samples. The same Inception network was used as the feature extractor. Recall proposed
in Kynkäänniemi et al. [2019] can be problematic when the generated samples contain outliers.
Coverage proposed in Naeem et al. [2020] is less susceptible to outliers, but also less sensitive. For
convenience of comparison, we take the average of the two quantities and call the resulting metric
“diversity”.

Generators. Two generator models were considered: DCGAN [Radford et al., 2015], and Style-
GAN [Karras et al., 2019]. For StyleGAN, we used the original implementations.2 There were 10
and 12 layers in the synthesis networks for the 64x64 CelebA data and 128x128 ChestX-ray data
respectively. We do not use StyleGAN for the MNIST task since the images are simple.

5.1 Results

Comparison with Baselines. Across all three tasks, our VMI formulations outperformed baselines
in terms of target accuracy and sample realism (see Table 1), even when using the same generator
architecture (DCGAN). Using a flow model for q(z) led to improvements in terms of accuracy. Using
the formulation in Equation 5 and a StyleGAN further improved performance on all metrics. VMI
also improved the overall sample qualities as evidenced by the lower FIDs. The full VMI (Equation 5)
was able to improve FID over pre-trained generators on CelebA. In general, MI attack methods
including VMI sacrificed sample quality to achieve higher accuracy, suggesting there is still room for
improvements for methods that can retain full realism. Detailed evaluation using sample diversity
metrics are reported in Table 2. In general, increasing γ increased diversity and realism while
sacrificing accuracy. Our VMI attack outperformed the baseline on all metrics at multiple settings.
The reported improvements in the quantitative metrics can be verified qualitatively in Figure 5.
Detailed results for MNIST and ChestX-ray (Table 4, and 5) can be found in the Appendix C. Using
StyleGAN with a Gaussian q(z) resulted in a slightly lower accuracy, but better diversity.

Our reported results for our baseline [Zhang et al., 2020] are obtained using our own implementation
since the reproduction code was not publicly available. The discrepancy with the original result can
come from a number of factors: dataset split, target classifier checkpoint, and the hyperparameters
involved in the method. We used the task setup described in this paper, and tuned the hyperparameters
over a reasonable grid of values.

2Code from: https://github.com/NVlabs/stylegan2-ada
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Generative
MI

VMI (ours)
StyleGAN + Flow

General
MI

Real
Samples

Generative
MI

General
MI

VMI (ours)
DCGAN + Flow

CelebA MNIST

Figure 5: MI attack samples on the first ten identities of CelebA and MNIST. Each row corresponds
to a different identity/digit. Qualitative differences are best viewed zoomed in.

VMI (ours)
DCGAN StyleGAN

Generative MI q(z) = Gaussian Flow Gaussian Flow
[Zhang et al., 2020] γ=0 0 1e-3 1e-1 0 1e-3 1e-1 0 1e-3 1e-1

Accuracy 0.07± 0.02 0.24± 0.05 0.33± 0.09 0.37± 0.07 0.13± 0.03 0.57± 0.06 0.56± 0.05 0.23± 0.03 0.58± 0.06 0.55± 0.06 0.39± 0.07

Precision 0.51± 0.04 0.64± 0.05 0.48± 0.08 0.52± 0.06 0.40± 0.06 0.87± 0.02 0.88± 0.02 0.82± 0.02 0.87± 0.03 0.87± 0.03 0.89± 0.03

Density 0.41± 0.04 0.67± 0.08 0.49± 0.11 0.52± 0.08 0.38± 0.06 1.26± 0.07 1.28± 0.07 1.14± 0.06 1.22± 0.08 1.22± 0.08 1.31± 0.10

Recall 0.21± 0.04 0.03± 0.01 0.00± 0.00 0.01± 0.01 0.13± 0.03 0.22± 0.03 0.25± 0.03 0.42± 0.03 0.11± 0.02 0.15± 0.03 0.21± 0.04

Coverage 0.83± 0.03 0.79± 0.04 0.37± 0.06 0.67± 0.06 0.70± 0.06 0.98± 0.01 0.98± 0.01 0.98± 0.01 0.96± 0.02 0.97± 0.02 0.98± 0.02

Diversity 0.52± 0.05 0.41± 0.04 0.19± 0.06 0.34± 0.06 0.41± 0.07 0.60± 0.03 0.61± 0.03 0.70± 0.03 0.54± 0.02 0.56± 0.04 0.59± 0.05

FID 43.21 28.98 58.39 40.89 40.74 16.69 16.11 13.49 17.28 17.41 21.35

Table 2: Detailed comparison between attack methods on CelebA.

Attacking Different Target Classifiers. After establishing the effectiveness of our VMI attack on
different datasets, we conducted experiments to test the effectiveness of our VMI attack against dif-
ferent target classifiers. We further tested two target classifier on CelebA: a VGG network [Simonyan
and Zisserman, 2014] trained from scratch on our target dataset, and an adapted ArcFace classi-
fier [Deng et al., 2019], which we denote as ArcFace-NC. The ArcFace is a specialized face identity
recognizer pretrained on a large collection of datasets. We adapt it by using the pretrained network
as a feature encoder,3 and adding a nearest cluster classifier in the feature space. This approach of
adapting a powerful feature extractor is popular and effective in few-shot classification [Chen et al.,
2019; Snell et al., 2017]. The resulting accuracy on held-out test examples in the target dataset were
62.1% (VGG) and 96.1% (ArcFace-NC). Results in Table 3 show that the same observations hold.
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Figure 6: Accuracy and di-
versity tradeoff on CelebA.

Accuracy vs. Diversity Tradeoff. Figure 6 shows the accuracy vs.
diversity tradeoff in VMI attacks on CelebA. The VMI attacks that
used the StyleGAN generally achieved a better accuracy vs. diversity
tradeoff than the ones used the DCGAN. We conjecture this is because
of the better layer-wise disentanglement that the StyleGAN achieves.

Effect of Individual Layers. As motivated in Section 4.1, the ex-
tended latent space in Equation 5 allowed our attack to modify each
layer which controlled different aspects of an image. Figure 7 shows
values for the KL-divergence and entropy for ql(z) at all layers after
VMI optimization in CelebA and ChestX-ray datasets. We can see a
general downward trend in KL divergences and an upward trend in entropies of q(z) with respect
to layers. This shows that in general the q(z) of the earlier layers were modified more by the opti-
mization than the q(z) of the later layers. This is consistent with our observation in Figure 2 that the
earlier layers have more control over features relevant to the identity of a face.

3Code and model from: https://github.com/TreB1eN/InsightFace_Pytorch
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VGG ArcFace-NC
VMI (ours) VMI (ours)

Generative MI DCGAN StyleGAN Generative MI DCGAN StyleGAN
[Zhang et al., 2020] Gaussian Flow Gaussian Flow [Zhang et al., 2020] Gaussian Flow Gaussian Flow

Accuracy 0.04± 0.03 0.16± 0.09 0.12± 0.08 0.17± 0.10 0.33± 0.18 0.21± 0.08 0.63± 0.17 0.55± 0.18 0.52± 0.13 0.90± 0.07

Precision 0.51± 0.09 0.60± 0.10 0.74± 0.07 0.80± 0.08 0.79± 0.11 0.59± 0.09 0.52± 0.13 0.53± 0.14 0.86± 0.04 0.84± 0.07

Density 0.42± 0.11 0.63± 0.16 0.76± 0.20 1.04± 0.19 1.02± 0.24 0.46± 0.13 0.55± 0.18 0.64± 0.21 1.26± 0.21 1.26± 0.23

Recall 0.23± 0.10 0.09± 0.04 0.02± 0.02 0.28± 0.06 0.04± 0.03 0.11± 0.04 0.01± 0.01 0.00± 0.01 0.23± 0.07 0.04± 0.03

Coverage 0.79± 0.13 0.75± 0.13 0.77± 0.12 0.93± 0.08 0.88± 0.10 0.81± 0.07 0.69± 0.11 0.69± 0.12 0.98± 0.03 0.96± 0.05

Diversity 0.51± 0.16 0.42± 0.13 0.39± 0.12 0.61± 0.10 0.46± 0.11 0.46± 0.08 0.35± 0.12 0.35± 0.12 0.60± 0.08 0.50± 0.05

FID* 59.27 53.85 57.88 32.51 46.13 63.63 59.23 63.37 32.94 40.22

Table 3: Detailed comparison on CelebA for two other target classifiers: VGG, and ArcFace-NC.
FID* reported here was computed over 20 identities instead of 100, so the values can not be directly
compared with those in Table 2.

KL-divergence Entropy

Figure 7: KL and entropy of ql(z) after VMI attack on CelebA and ChestX-ray at different layers.

6 Limitation & Ethical Concerns

While our VMI attack was effective, it relied on the same assumption made in previous works: the
attacker had access to a relevant auxiliary dataset [Yang et al., 2019b; Zhang et al., 2020]. A worth-
while future direction is to develop methods that do not depend on this assumption. Methodologically,
our proposed VMI attack used a GAN to narrow down the search space of the variational objective,
but GANs might not be equally effective for other data modalities such as text, and tabular data.
Lastly, our study focused on the white-box setting where the attacker had full access to the model;
extensions of the current VMI attack to the grey-box or black-box settings are also worthy of further
investigation.

In this work, we focused on a method for improving model inversion attacks, which could have
negative societal impacts if it falls into the wrong hands. As discussed in Section 1, malicious users
can use attacks like this to break into secured systems and steal information from private data-centers.
On the other hand, by pointing out the extent of the vulnerability of current models, we hope to
facilitate research that builds better privacy-preserving algorithms, and raise awareness about privacy
concerns.

7 Conclusion

An effective model inversion attack method must produce a set of samples that accurately captures
the distinguishing features and variations of the underlying identity/class. Our proposed VMI attack
optimizes a variational inference objective by using a combination of a StyleGAN generator and a
deep flow model as its variational distribution. Our framework also provides insights into existing
attack methods. Empirically, we found our VMI attacks were effective on three different tasks, and
across different target classifiers.
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